Ⅰ 什么是神经网络,举例说明神经网络的应用
我想这可能是你想要的神经网络吧!
什么是神经网络:
人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
神经网络的应用:
应用
在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人、复杂系统控制等等。
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:
生物原型
从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
建立模型
根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
算法
在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。
Ⅱ 神经网络到底有什么作用,具体是用来干什么的
神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
神经网络可以用于模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等。随着神经网络理论本身以及相关理论、相关技术的不断发展,神经网络的应用定将更加深入。
Ⅲ 人工神经网络,人工神经网络是什么意思
一、 人工神经网络的概念
人工神经网络(Artificial Neural Network,ANN)简称神经网络(NN),是基于生物学中神经网络的基本原理,在理解和抽象了人脑结构和外界刺激响应机制后,以网络拓扑知识为理论基础,模拟人脑的神经系统对复杂信息的处理机制的一种数学模型。该模型以并行分布的处理能力、高容错性、智能化和自学习等能力为特征,将信息的加工和存储结合在一起,以其独特的知识表示方式和智能化的自适应学习能力,引起各学科领域的关注。它实际上是一个有大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统。
神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激活函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),神经网络就是通过这种方式来模拟人类的记忆。网络的输出则取决于网络的结构、网络的连接方式、权重和激活函数。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。神经网络的构筑理念是受到生物的神经网络运作启发而产生的。人工神经网络则是把对生物神经网络的认识与数学统计模型相结合,借助数学统计工具来实现。另一方面在人工智能学的人工感知领域,我们通过数学统计学的方法,使神经网络能够具备类似于人的决定能力和简单的判断能力,这种方法是对传统逻辑学演算的进一步延伸。
人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。人工神经网络是一种非程序化、适应性、大脑风格的信息处理,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。
神经网络,是一种应用类似于大脑神经突触连接结构进行信息处理的数学模型,它是在人类对自身大脑组织结合和思维机制的认识理解基础之上模拟出来的,它是根植于神经科学、数学、思维科学、人工智能、统计学、物理学、计算机科学以及工程科学的一门技术。
二、 人工神经网络的发展
神经网络的发展有悠久的历史。其发展过程大致可以概括为如下4个阶段。
1. 第一阶段----启蒙时期
(1)、M-P神经网络模型:20世纪40年代,人们就开始了对神经网络的研究。1943 年,美国心理学家麦克洛奇(Mcculloch)和数学家皮兹(Pitts)提出了M-P模型,此模型比较简单,但是意义重大。在模型中,通过把神经元看作个功能逻辑器件来实现算法,从此开创了神经网络模型的理论研究。
(2)、Hebb规则:1949 年,心理学家赫布(Hebb)出版了《The Organization of Behavior》(行为组织学),他在书中提出了突触连接强度可变的假设。这个假设认为学习过程最终发生在神经元之间的突触部位,突触的连接强度随之突触前后神经元的活动而变化。这一假设发展成为后来神经网络中非常着名的Hebb规则。这一法则告诉人们,神经元之间突触的联系强度是可变的,这种可变性是学习和记忆的基础。Hebb法则为构造有学习功能的神经网络模型奠定了基础。
(3)、感知器模型:1957 年,罗森勃拉特(Rosenblatt)以M-P 模型为基础,提出了感知器(Perceptron)模型。感知器模型具有现代神经网络的基本原则,并且它的结构非常符合神经生理学。这是一个具有连续可调权值矢量的MP神经网络模型,经过训练可以达到对一定的输入矢量模式进行分类和识别的目的,它虽然比较简单,却是第一个真正意义上的神经网络。Rosenblatt 证明了两层感知器能够对输入进行分类,他还提出了带隐层处理元件的三层感知器这一重要的研究方向。Rosenblatt 的神经网络模型包含了一些现代神经计算机的基本原理,从而形成神经网络方法和技术的重大突破。
(4)、ADALINE网络模型: 1959年,美国着名工程师威德罗(B.Widrow)和霍夫(M.Hoff)等人提出了自适应线性元件(Adaptive linear element,简称Adaline)和Widrow-Hoff学习规则(又称最小均方差算法或称δ规则)的神经网络训练方法,并将其应用于实际工程,成为第一个用于解决实际问题的人工神经网络,促进了神经网络的研究应用和发展。ADALINE网络模型是一种连续取值的自适应线性神经元网络模型,可以用于自适应系统。
2. 第二阶段----低潮时期
人工智能的创始人之一Minsky和Papert对以感知器为代表的网络系统的功能及局限性从数学上做了深入研究,于1969年发表了轰动一时《Perceptrons》一书,指出简单的线性感知器的功能是有限的,它无法解决线性不可分的两类样本的分类问题,如简单的线性感知器不可能实现“异或”的逻辑关系等。这一论断给当时人工神经元网络的研究带来沉重的打击。开始了神经网络发展史上长达10年的低潮期。
(1)、自组织神经网络SOM模型:1972年,芬兰的KohonenT.教授,提出了自组织神经网络SOM(Self-Organizing feature map)。后来的神经网络主要是根据KohonenT.的工作来实现的。SOM网络是一类无导师学习网络,主要用于模式识别﹑语音识别及分类问题。它采用一种“胜者为王”的竞争学习算法,与先前提出的感知器有很大的不同,同时它的学习训练方式是无指导训练,是一种自组织网络。这种学习训练方式往往是在不知道有哪些分类类型存在时,用作提取分类信息的一种训练。
(2)、自适应共振理论ART:1976年,美国Grossberg教授提出了着名的自适应共振理论ART(Adaptive Resonance Theory),其学习过程具有自组织和自稳定的特征。
3. 第三阶段----复兴时期
(1)、Hopfield模型:1982年,美国物理学家霍普菲尔德(Hopfield)提出了一种离散神经网络,即离散Hopfield网络,从而有力地推动了神经网络的研究。在网络中,它首次将李雅普诺夫(Lyapunov)函数引入其中,后来的研究学者也将Lyapunov函数称为能量函数。证明了网络的稳定性。1984年,Hopfield 又提出了一种连续神经网络,将网络中神经元的激活函数由离散型改为连续型。1985 年,Hopfield和Tank利用Hopfield神经网络解决了着名的旅行推销商问题(Travelling Salesman Problem)。Hopfield神经网络是一组非线性微分方程。Hopfield的模型不仅对人工神经网络信息存储和提取功能进行了非线性数学概括,提出了动力方程和学习方程,还对网络算法提供了重要公式和参数,使人工神经网络的构造和学习有了理论指导,在Hopfield模型的影响下,大量学者又激发起研究神经网络的热情,积极投身于这一学术领域中。因为Hopfield 神经网络在众多方面具有巨大潜力,所以人们对神经网络的研究十分地重视,更多的人开始了研究神经网络,极大地推动了神经网络的发展。
(2)、Boltzmann机模型:1983年,Kirkpatrick等人认识到模拟退火算法可用于NP完全组合优化问题的求解,这种模拟高温物体退火过程来找寻全局最优解的方法最早由Metropli等人1953年提出的。1984年,Hinton与年轻学者Sejnowski等合作提出了大规模并行网络学习机,并明确提出隐单元的概念,这种学习机后来被称为Boltzmann机。
Hinton和Sejnowsky利用统计物理学的感念和方法,首次提出的多层网络的学习算法,称为Boltzmann 机模型。
(3)、BP神经网络模型:1986年,儒默哈特(D.E.Ru melhart)等人在多层神经网络模型的基础上,提出了多层神经网络权值修正的反向传播学习算法----BP算法(Error Back-Propagation),解决了多层前向神经网络的学习问题,证明了多层神经网络具有很强的学习能力,它可以完成许多学习任务,解决许多实际问题。
(4)、并行分布处理理论:1986年,由Rumelhart和McCkekkand主编的《Parallel Distributed Processing:Exploration in the Microstructures of Cognition》,该书中,他们建立了并行分布处理理论,主要致力于认知的微观研究,同时对具有非线性连续转移函数的多层前馈网络的误差反向传播算法即BP算法进行了详尽的分析,解决了长期以来没有权值调整有效算法的难题。可以求解感知机所不能解决的问题,回答了《Perceptrons》一书中关于神经网络局限性的问题,从实践上证实了人工神经网络有很强的运算能力。
(5)、细胞神经网络模型:1988年,Chua和Yang提出了细胞神经网络(CNN)模型,它是一个细胞自动机特性的大规模非线性计算机仿真系统。Kosko建立了双向联想存储模型(BAM),它具有非监督学习能力。
(6)、Darwinism模型:Edelman提出的Darwinism模型在90年代初产生了很大的影响,他建立了一种神经网络系统理论。
(7)、1988年,Linsker对感知机网络提出了新的自组织理论,并在Shanon信息论的基础上形成了最大互信息理论,从而点燃了基于NN的信息应用理论的光芒。
(8)、1988年,Broomhead和Lowe用径向基函数(Radialbasis function, RBF)提出分层网络的设计方法,从而将NN的设计与数值分析和线性适应滤波相挂钩。
(9)、1991年,Haken把协同引入神经网络,在他的理论框架中,他认为,认知过程是自发的,并断言模式识别过程即是模式形成过程。
(10)、1994年,廖晓昕关于细胞神经网络的数学理论与基础的提出,带来了这个领域新的进展。通过拓广神经网络的激活函数类,给出了更一般的时滞细胞神经网络(DCNN)、Hopfield神经网络(HNN)、双向联想记忆网络(BAM)模型。
(11)、90年代初,Vapnik等提出了支持向量机(Supportvector machines, SVM)和VC(Vapnik-Chervonenkis)维数的概念。
经过多年的发展,已有上百种的神经网络模型被提出。
Ⅳ 什么是支持向量机
什么是支持向量机?支持向量机基本概念
SVM算法是一种学习机制,是由Vapnik提出的旨在改善传统神经网络学习方法的理论弱点,最先从最优分类面问题提出了支持向量机网络。SVM学习算法根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折中,以期获得最好的泛化能力。SVM在形式上类似于多层前向网络,而且已被应用于模式识别、回归分析、数据挖掘等方面。
支持向量机这些特点是其他学习算法(如人工神经网络)所不及的。对于分类问题,单层前向网络可解决线性分类问题,多层前向网络可解决非线性分类问题。但这些网络仅仅能够解决问题,并不能保证得到的分类器是最优的;而基于统计学习理论的支持向量机方法能够从理论上实现对不同类别间的最优分类,通过寻找最坏的向量,即支持向量,达到最好的泛化能力。
SVM总的来说可以分为线性SVM和非线性SVM两类。线性SVM是以样本间的欧氏距离大小为依据来决定划分的结构的。非线性的SVM中以卷积核函数代替内积后,相当于定义了一种广义的趾离,以这种广义距离作为划分依据。
模糊支持向量机有两种理解:一种是针对多定义样本或漏分样本进行模糊后处理;另一种是在训练过程中引入模糊因子作用。
SVM在量化投资中的应用主要是进行金融时序数列的预测。根据基于支持向量机的时间序列预测模型,先由训练样本对模型进行训练和完备,然后将时间序列数据进行预测并输出预测结果。
本章介绍的第一个案例是一种基于最小二乘法的支持向最机的复杂金融数据时间序列预测方法,大大提高了求解问题的速度和收敛精度。相比于神经网络预测方法,该方法在大批量金融数据时间序列预测的训练时间、训练次数和预测误差上都有了明显提高,对复杂金融时间序列具有较好的预测效果。
第二个案例是利用SVM进行大盘拐点判断,由于使用单一技术指标对股价反转点进行预测存在较大的误差,所以使用多个技术指标组合进行相互验证就显得特别必要。SVM由于采用了结构风险最小化原则,能够较好地解决小样本非线性和高维数问题,因此通过构造一个包含多个技术指标组合的反转点判断向最,并使用SVM对技术指标组合向量进行数据挖掘,可以得到更加准确的股价反转点预测模型。
支持向量机基本概念
SVM算法是一种学习机制,是由Vapnik提出的旨在改善传统神经网络学习方法的理论弱点,最先从最优分类面问题提出了支持向量机网络。
SVM学习算法根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折中,以期获得最好的泛化能力。SVM在形式上类似于多层前向网络,而且己被应用于模式识别、回归分析、数据挖掘等方面。支持向量机方法能够克服多层前向网络的固有缺陷,它有以下几个优点:
(1)它是针对有限样本情况的。根据结构风险最小化原则,尽量提高学习机的泛化能力,即由有限的训练样本得到小的误差,能够保证对独立的测试集仍保持小的误差,其目标是得到现有信息下的最优解,而不仅仅是样本数趋于无穷大时的最优值。
(2)算法最终将转化成一个二次型寻优问题,从理论上说,得到的将是全局最优点。
(3)算法将实际问题通过非线性变换转换到高维的特征空间,在高维空间中构造线性判别函数来实现原空间中的非线性判别函数,这一特殊的性质能保证机器有较好的泛化能力,同时它巧妙地解决了维数灾难问题,使得其算法复杂度与样本维数无关。
Ⅳ 请高人指点!什么是支持向量机(SVM)其本质原理是什么
支持向量机SVM ( Support Vector Machines)是由Vanpik领导的AT&TBell实验室研究小组
在1963年提出的一种新的非常有潜力的分类技术, SVM是一种基于统计学习理论的模式识别方法,主要应用于模式识别领域.由于当时这些研究尚不十分完善,在解决模式识别问题中往往趋于保守,且数学上比较艰涩,因此这些研究一直没有得到充的重视.直到90年代,一个较完善的理论体系—统计学习理论 ( StatisticalLearningTheory,简称SLT) 的实现和由于神经网络等较新兴的机器学习方法的研究遇到一些重要的困难,比如如何确定网络结构的问题、过学习与欠学习问题、局部极小点问题等,使得SVM迅速发展和完善,在解决小样本 、非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中.从此迅速的发展起来,现在已经在许多领域(生物信息学,文本和手写识别等)都取得了成功的应用。
SVM的关键在于核函数,这也是最喜人的地方。低维空间向量集通常难于划分,解决的方法是将它们映射到高维空间。但这个办法带来的困难就是计算复杂度的增加,而核函数正好巧妙地解决了这个问题。也就是说,只要选用适当的核函数,我们就可以得到高维空间的分类函数。在SVM理论中,采用不同的核函数将导致不同的SVM算法
它是一种以统计学理论为基础的,以结构风险最小化的学习机学习方法,要优于神经网络学习,以上是摘自本人的毕业设计,如需转载,请通知本人
Ⅵ 支持向量机原理
支持向量机方法的基本思想是:定义最优线性超平面,并把寻找最优线性超平面的算法归结为求解一个凸规划问题。进而基于Mercer核展开定理,通过非线性映射φ,把样本空间映射到一个高维乃至于无穷维的特征空间(Hilbert空间),使在特征空间中可以应用线性学习机的方法解决样本空间中的高度非线性分类和回归等问题(Nello Cristianini,2005)。简单地说就是升维和线性化。一般的升维都会带来计算的复杂化。这里自然发生的两个问题是如何求得非线性映射φ和解决算法的复杂性。SVM方法巧妙地解决了这两个难题:由于应用了核函数的展开定理,所以根本不需要知道非线性映射的显式表达式;由于是在高维特征空间中应用线性学习机的方法,所以与线性模型相比不但几乎不增加计算的复杂性,而且在某种程度上避免了“维数灾”。另外,SVM是一种有坚实理论基础的新颖的小样本学习方法。它基本上不涉及概率测度的定义及大数定律等,因此不同于现有的统计方法。从本质上看,它避开了从归纳到演绎的传统过程,实现了高效的从训练样本到预报样本的“转导推理”(transctive inference),大大简化了通常的分类和回归等问题。SVM的最终决策函数只由少数的支持向量所确定,计算的复杂性取决于支持向量的数目,而不是样本空间的维数,这在某种意义上避免了“维数灾”。如果说神经网络方法是对样本的所有因子加权的话,SVM方法是对只占样本集少数的支持向量样本“加权”。当预报因子与预报对象间蕴涵的复杂非线性关系尚不清楚时,基于关键样本的方法可能优于基于因子的“加权”。少数支持向量决定了最终结果,这不但可以帮助我们抓住关键样本、“剔除”大量冗余样本,而且注定了该方法不但算法简单,而且具有较好的“鲁棒”性。由于有较为严格的统计学习理论做保证,应用SVM方法建立的模型具有较好的推广能力。SVM方法可以给出所建模型的推广能力的确定的界,这是目前其它任何学习方法所不具备的。
随着支持向量机理论的深入研究,出现了许多变种的支持向量机,如Sheng-wei Fe(2009)提出的两类重要的预测技术:分类和回归。其中分类问题预测要求观察值是离散的,而回归问题主要针对决策属性值是连续的情况,它通过学习训练样本集建立一个回归器,然后在条件属性给定的情况下进行预测。
支持向量机回归分为线性回归和非线性回归,其原理如下:
(1)支持向量机线性回归
设样本集为:(x1,y1),…,(xi,yi),x∈Rn,y∈R,回归函数用下列线性方程来表示:
f(x)=w·x+b (4.14)
假设所有训练数据在ε精度下如图4.5所示无误差地用线性函数拟合,即
基坑降水工程的环境效应与评价方法
图4.5 支持向量机回归
考虑到允许误差的情况,引入松弛因子ξi,
,则式(4.13)变为
基坑降水工程的环境效应与评价方法
其中常数C>0,表示对超出误差ε的样本的惩罚程度,ξi,
为松弛变量的上限与下限。为此构造拉格朗日函数:
基坑降水工程的环境效应与评价方法
得到其对偶问题为:
基坑降水工程的环境效应与评价方法
基坑降水工程的环境效应与评价方法
基坑降水工程的环境效应与评价方法
可以得到回归函数为:
其中,αi,
将只有一小部分小为零,它们对应的样本就是支持向量。
(2)支持向量机非线性回归
以上讨论的是线性问题,对于非线性问题,把输入样本xi通过ψ:x→H映射到高维特征空间H(可能是无穷维)。当在特征空间中构造最优超平面时,实际上只需进行内积运算,而这种内积运算是可以用原空间中的函数来实现的,没有必要知道ψ的形式。因为只要核函数K(xi,xj)满足Mercer条件,它就对应某一变换空间的内积即K(xi,xj)=ψ(i)·ψ(xj)。这一点提供了可能导致的“维数灾难”问题解决方法。
由线性支持向量回归可知,二次规划的拉格朗日目标函数:
基坑降水工程的环境效应与评价方法
其对偶形式:
基坑降水工程的环境效应与评价方法
可以得到回归函数为:
基坑降水工程的环境效应与评价方法
传统的拟合方法通常是在线性方程后面加高阶项。由此增加的可调参数增加了过拟合的风险。支持向量回归用核函数即能作非线性回归,达到了“升维”的目的,增加的可调参数很少,过拟合仍能控制。
Ⅶ 神经网络的介绍
神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络:是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为“神经网络”或类神经网络。

Ⅷ 人工神经网络的发展
现代意义上对神经网络(特指人工神经网络)的研究一般认为从1943年美国芝加哥大学的生理学家W.S. McCulloch和W.A. Pitts提出M-P神经元模型开始,到今年正好六十年。在这六十年中,神经网络的发展走过了一段曲折的道路。1965年M. Minsky和S. Papert在《感知机》一书中指出感知机的缺陷并表示出对这方面研究的悲观态度,使得神经网络的研究从兴起期进入了停滞期,这是神经网络发展史上的第一个转折。到了20世纪80年代初,J.J. Hopfield的工作和D. Rumelhart等人的PDP报告显示出神经网络的巨大潜力,使得该领域的研究从停滞期进入了繁荣期,这是神经网络发展史上的第二个转折。
到了20世纪90年代中后期,随着研究者们对神经网络的局限有了更清楚的认识,以及支持向量机等似乎更有前途的方法的出现,“神经网络”这个词不再象前些年那么“火爆”了。很多人认为神经网络的研究又开始陷入了低潮,并认为支持向量机将取代神经网络。有趣的是,着名学者C.-J. Lin于2003年1月在德国马克斯·普朗克研究所所做的报告中说,支持向量机虽然是一个非常热门的话题,但目前最主流的分类工具仍然是决策树和神经网络。由着名的支持向量机研究者说出这番话,显然有一种特殊的意味。
事实上,目前神经网络的境遇与1965年之后真正的低潮期相比有明显的不同。在1965年之后的很长一段时期里,美国和前苏联没有资助任何一项神经网络的研究课题,而今天世界各国对神经网络的研究仍然有大量的经费支持;1965年之后90%以上的神经网络研究者改变了研究方向,而今天无论是国际还是国内都有一支相对稳定的研究队伍。实际上,神经网络在1965年之后陷入低潮是因为当时该领域的研究在一定意义上遭到了否定,而今天的相对平静是因为该领域已经走向成熟,很多技术开始走进生产和生活,从而造成了原有研究空间的缩小。
在科学研究中通常有这么一个现象,当某个领域的论文大量涌现的时候,往往正是该领域很不成熟、研究空间很大的时候,而且由于这时候人们对该领域研究的局限缺乏清楚的认识,其热情往往具有很大的盲目性。从这个意义上说,过去若干年里各领域研究者一拥而上、各种专业刊物满眼“神经网络”的风光,其实是一种畸形繁荣的景象,而对神经网络的研究现在才进入了一个比较理智、正常的发展期。在这段时期中,通过对以往研究中存在的问题和局限进行反思,并适当借鉴相关领域的研究进展,将可望开拓新的研究空间,为该领域的进一步发展奠定基础。
Ⅸ 人工智能和神经网络
人工智能的发展飞快,这也得益于人工智能的技术成熟。而人工智能离不开神经网络,神经网络在人工智能的发展中也是走过了十分崎岖的道路,那么究竟是怎么一回事呢?我们在这篇文章中给大家介绍一下这个问题。
每一个科学的技术发展进程都是十分相似的,如果我们从历史来看,就能够发展一件十分有意思的事情,重大科学的研究往往呈螺旋形上升的过程,不可能一蹴而就,每一次基础科学研究的重大进步,科技应用的重大突破,往往先由一两个领军人物偶然点破,而后大家争相研究,于是就在很短的时间内做出大量更具突破性的成果,同时带来相关产业界的革命性增长。而神经网络也是这样的。人工神经网络正是机器学习领域几十年来积累诞生的重大科学研究和工程应用成果,当前深度学习被看作是通向人工智能的关键技术,得到了很多科学家的重视。
首先说说什么是神经网络吧,神经网络是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。神经网络是机器学习的一个方向,而机器学习的另一个方向就是支持向量机。而以支持向量机为代表的浅层学习技术十分火爆,但是机器学习技术却很少投入使用中,后来神经网络方面的技术得到的实质性的改变,逐渐走出实验室,在学术界研究和产业界应用都得以应用。
神经网络的大起大落代表了人工智能的三个泡沫期,这给过分热衷深度学习技术与人工智能研究应用的人来讲,也是该降降温的,期望越大,失望越大,毕竟深度学习技术没有想象中的那么强大,至少在智能算法层面的突破很有限。换个角度看,深度学习的兴起,很可能是因为机器学习算法研究几十年迟迟无重大进展。
我们在这篇文章中给大家讲述的人工智能和神经网络的发展,从中我们可以看出人工智能的发展是离不开机器学习的,而机器学习又离不开神经网络,所以我们要想做好人工智能,那就不要丢下神经学习,唯有并驾齐驱,相互帮助,才能把智能科技发展的道路走得更远更牢。
Ⅹ 深度神经网络 为什么 选择 支持向量机
深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。多层神经网络是指单计算层感知器只能解决线性可分问题,而大量的分类问题是线性不可分的。克服单计算层感知器这一局限性的有效办法是,在输入层与输出层之间引入隐层(隐层个数可以大于或等于1)作为输入模式“的内部表示”,单计算层感知器变成多(计算)层感知器。补充:深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。