Ⅰ 网络有害信息检测技术手段有哪些
1.宽带高速实时的检测技术如何实现千兆以太网等高速网络下的实时入侵检测已经成为现实问题。目前的千兆IDS产品性能指标与实际要求相差很远,提高性能应主要考虑两个方面:IDS的软件结构和算法需要重新设计,以提高运行速度和效率,适应高速网的环境;随着高速网络技术的不断发展,IDS如何适应IPV6等新一代网络协议将成为一个全新的问题。2.大规模分布式的检测技术传统的集中式IDS是在不同网段放置多个探测器来收集当前网络状态信息,并传送到中央控制台进行处理分析。这种方式存在明显的缺陷:第一,对了大规模的分布式攻击,中央控制台的负荷将会超过处理极限,导致漏报率增高;第二,多个探测器收集到的数据在网络上的传输一定程度上增加了网络负担,导致网络系统性能降低;第三,由于网络传输的延时问题,中央控制台处理的数据包不能实时反映当前网络状态。3.数据挖掘技术操作系统的日益复杂和网络流量的急剧增加,导致了审计数据以惊人的速度剧增。
Ⅱ 异常检测有哪些主要的分析方法
1. 概率统计方法
在基于异常检测技术的IDS中应用最早也是最多的一种方法。
首先要对系统或用户的行为按照一定的时间间隔进行采样,样本的内容包括每个会话的登录、退出情况,CPU和内存的占用情况,硬盘等存储介质的使用情况等。
将每次采集到的样本进行计算,得出一系列的参数变量对这些行为进行描述,从而产生行为轮廓,将每次采样后得到的行为轮廓与已有轮廓进行合并,最终得到系统和用户的正常行为轮廓。IDS通过将当前采集到的行为轮廓与正常行为轮廓相比较,来检测是否存在网络入侵行为。
2. 预测模式生成法
假设条件是事件序列不是随机的而是遵循可辨别的模式。这种检测方法的特点是考虑了事件的序列及其相互联系,利用时间规则识别用户行为正常模式的特征。通过归纳学习产生这些规则集,并能动态地修改系统中的这些规则,使之具有较高的预测性、准确性。如果规则在大部分时间是正确的,并能够成功地运用预测所观察到的数据,那么规则就具有高可信度。
3. 神经网络方法
基本思想是用一系列信息单元(命令)训练神经单元,这样在给定一组输入后、就可能预测出输出。与统计理论相比,神经网络更好地表达了变量间的非线性关系,并且能自动学习并更新。实验表明UNIX系统管理员的行为几乎全是可以预测的,对于一般用户,不可预测的行为也只占了很少的一部分。
Ⅲ “宏观网络流量”的定义是什么有哪些异常检测方法
一种互联网宏观流量异常检测方法(2007-11-7 10:37) 摘要:网络流量异常指网络中流量不规则地显着变化。网络短暂拥塞、分布式拒绝服务攻击、大范围扫描等本地事件或者网络路由异常等全局事件都能够引起网络的异常。网络异常的检测和分析对于网络安全应急响应部门非常重要,但是宏观流量异常检测需要从大量高维的富含噪声的数据中提取和解释异常模式,因此变得很困难。文章提出一种分析网络异常的通用方法,该方法运用主成分分析手段将高维空间划分为对应正常和异常网络行为的子空间,并将流量向量影射在正常子空间中,使用基于距离的度量来检测宏观网络流量异常事件。公共互联网正在社会生活的各个领域发挥着越来越重要的作用,与此同时,由互联网的开放性和应用系统的复杂性所带来的安全风险也随之增多。2006年,国家计算机网络应急技术处理协调中心(CNCERT/CC)共接收26 476件非扫描类网络安全事件报告,与2005年相比增加2倍,超过2003—2005年3年的总和。2006年,CNCERT/CC利用部署的863-917网络安全监测平台,抽样监测发现中国大陆地区约4.5万个IP地址的主机被植入木马,与2005年同期相比增加1倍;约有1千多万个IP地址的主机被植入僵尸程序,被境外约1.6万个主机进行控制。黑客利用木马、僵尸网络等技术操纵数万甚至上百万台被入侵的计算机,释放恶意代码、发送垃圾邮件,并实施分布式拒绝服务攻击,这对包括骨干网在内的整个互联网网络带来严重的威胁。由数万台机器同时发起的分布式拒绝服务攻击能够在短时间内耗尽城域网甚至骨干网的带宽,从而造成局部的互联网崩溃。由于政府、金融、证券、能源、海关等重要信息系统的诸多业务依赖互联网开展,互联网骨干网络的崩溃不仅会带来巨额的商业损失,还会严重威胁国家安全。据不完全统计,2001年7月19日爆发的红色代码蠕虫病毒造成的损失估计超过20亿美元;2001年9月18日爆发的Nimda蠕虫病毒造成的经济损失超过26亿美元;2003年1月爆发的SQL Slammer蠕虫病毒造成经济损失超过12亿美元。针对目前互联网宏观网络安全需求,本文研究并提出一种宏观网络流量异常检测方法,能够在骨干网络层面对流量异常进行分析,在大规模安全事件爆发时进行快速有效的监测,从而为网络防御赢得时间。1 网络流量异常检测研究现状在骨干网络层面进行宏观网络流量异常检测时,巨大流量的实时处理和未知攻击的检测给传统入侵检测技术带来了很大的挑战。在流量异常检测方面,国内外的学术机构和企业不断探讨并提出了多种检测方法[1]。经典的流量监测方法是基于阈值基线的检测方法,这种方法通过对历史数据的分析建立正常的参考基线范围,一旦超出此范围就判断为异常,它的特点是简单、计算复杂度小,适用于实时检测,然而它作为一种实用的检测手段时,需要结合网络流量的特点进行修正和改进。另一种常用的方法是基于统计的检测,如一般似然比(GLR)检测方法[2],它考虑两个相邻的时间窗口以及由这两个窗口构成的合并窗口,每个窗口都用自回归模型拟合,并计算各窗口序列残差的联合似然比,然后与某个预先设定的阈值T 进行比较,当超过阈值T 时,则窗口边界被认定为异常点。这种检测方法对于流量的突变检测比较有效,但是由于它的阈值不是自动选取,并且当异常持续长度超过窗口长度时,该方法将出现部分失效。统计学模型在流量异常检测中具有广阔的研究前景,不同的统计学建模方式能够产生不同的检测方法。最近有许多学者研究了基于变换域进行流量异常检测的方法[3],基于变换域的方法通常将时域的流量信号变换到频域或者小波域,然后依据变换后的空间特征进行异常监测。P. Barford等人[4]将小波分析理论运用于流量异常检测,并给出了基于其理论的4类异常结果,但该方法的计算过于复杂,不适于在高速骨干网上进行实时检测。Lakhina等人[5-6]利用主成分分析方法(PCA),将源和目标之间的数据流高维结构空间进行PCA分解,归结到3个主成分上,以3个新的复合变量来重构网络流的特征,并以此发展出一套检测方法。此外还有一些其他的监测方法[7],例如基于Markov模型的网络状态转换概率检测方法,将每种类型的事件定义为系统状态,通过过程转换模型来描述所预测的正常的网络特征,当到来的流量特征与期望特征产生偏差时进行报警。又如LERAD检测[8],它是基于网络安全特征的检测,这种方法通过学习得到流量属性之间的正常的关联规则,然后建立正常的规则集,在实际检测中对流量进行规则匹配,对违反规则的流量进行告警。这种方法能够对发生异常的地址进行定位,并对异常的程度进行量化。但学习需要大量正常模式下的纯净数据,这在实际的网络中并不容易实现。随着宏观网络异常流量检测成为网络安全的技术热点,一些厂商纷纷推出了电信级的异常流量检测产品,如Arbor公司的Peakflow、GenieNRM公司的GenieNTG 2100、NetScout公司的nGenius等。国外一些研究机构在政府资助下,开始部署宏观网络异常监测的项目,并取得了较好的成绩,如美国研究机构CERT建立了SiLK和AirCERT项目,澳大利亚启动了NMAC流量监测系统等项目。针对宏观网络异常流量监测的需要,CNCERT/CC部署运行863-917网络安全监测平台,采用分布式的架构,能够通过多点对骨干网络实现流量监测,通过分析协议、地址、端口、包长、流量、时序等信息,达到对中国互联网宏观运行状态的监测。本文基于863-917网络安全监测平台获取流量信息,构成监测矩阵,矩阵的行向量由源地址数量、目的地址数量、传输控制协议(TCP)字节数、TCP报文数、数据报协议(UDP)字节数、UDP报文数、其他流量字节数、其他流量报文书、WEB流量字节数、WEB流量报文数、TOP10个源IP占总字节比例、TOP10个源IP占总报文数比例、TOP10个目的IP占总字节数比例、TOP10个目的IP占总报文数比例14个部分组成,系统每5分钟产生一个行向量,观测窗口为6小时,从而形成了一个72×14的数量矩阵。由于在这14个观测向量之间存在着一定的相关性,这使得利用较少的变量反映原来变量的信息成为可能。本项目采用了主成份分析法对观测数据进行数据降维和特征提取,下面对该算法的工作原理进行介绍。 2 主成分分析技术主成分分析是一种坐标变换的方法,将给定数据集的点映射到一个新轴上面,这些新轴称为主成分。主成分在代数学上是p 个随机变量X 1, X 2……X p 的一系列的线性组合,在几何学中这些现线性组合代表选取一个新的坐标系,它是以X 1,X 2……X p 为坐标轴的原来坐标系旋转得到。新坐标轴代表数据变异性最大的方向,并且提供对于协方差结果的一个较为简单但更精练的刻画。主成分只是依赖于X 1,X 2……X p 的协方差矩阵,它是通过一组变量的几个线性组合来解释这些变量的协方差结构,通常用于高维数据的解释和数据的压缩。通常p 个成分能够完全地再现全系统的变异性,但是大部分的变异性常常能够只用少量k 个主成分就能够说明,在这种情况下,这k 个主成分中所包含的信息和那p 个原变量做包含的几乎一样多,于是可以使用k 个主成分来代替原来p 个初始的变量,并且由对p 个变量的n 次测量结果所组成的原始数据集合,能够被压缩成为对于k 个主成分的n 次测量结果进行分析。运用主成分分析的方法常常能够揭示出一些先前不曾预料的关系,因而能够对于数据给出一些不同寻常的解释。当使用零均值的数据进行处理时,每一个主成分指向了变化最大的方向。主轴以变化量的大小为序,一个主成分捕捉到在一个轴向上最大变化的方向,另一个主成分捕捉到在正交方向上的另一个变化。设随机向量X '=[X 1,X 1……X p ]有协方差矩阵∑,其特征值λ1≥λ2……λp≥0。考虑线性组合:Y1 =a 1 'X =a 11X 1+a 12X 2……a 1pX pY2 =a 2 'X =a 21X 1+a 22X 2……a 2pX p……Yp =a p'X =a p 1X 1+a p 2X 2……a p pX p从而得到:Var (Yi )=a i' ∑a i ,(i =1,2……p )Cov (Yi ,Yk )=a i '∑a k ,(i ,k =1,2……p )主成分就是那些不相关的Y 的线性组合,它们能够使得方差尽可能大。第一主成分是有最大方差的线性组合,也即它能够使得Var (Yi )=a i' ∑a i 最大化。我们只是关注有单位长度的系数向量,因此我们定义:第1主成分=线性组合a 1'X,在a1'a 1=1时,它能够使得Var (a1 'X )最大;第2主成分=线性组合a 2 'X,在a2'a 2=1和Cov(a 1 'X,a 2 'X )=0时,它能够使得Var (a 2 'X )最大;第i 个主成分=线性组合a i'X,在a1'a 1=1和Cov(a i'X,a k'X )=0(k<i )时,它能够使得Var (a i'X )最大。由此可知主成分都是不相关的,它们的方差等于协方差矩阵的特征值。总方差中属于第k个主成分(被第k个主成分所解释)的比例为:如果总方差相当大的部分归属于第1个、第2个或者前几个成分,而p较大的时候,那么前几个主成分就能够取代原来的p个变量来对于原有的数据矩阵进行解释,而且信息损失不多。在本项目中,对于一个包含14个特征的矩阵进行主成分分析可知,特征的最大变化基本上能够被2到3个主成分捕捉到,这种主成分变化曲线的陡降特性构成了划分正常子空间和异常子空间的基础。3 异常检测算法本项目的异常流量检测过程分为3个阶段:建模阶段、检测阶段和评估阶段。下面对每个阶段的算法进行详细的介绍。3.1 建模阶段本项目采用滑动时间窗口建模,将当前时刻前的72个样本作为建模空间,这72个样本的数据构成了一个数据矩阵X。在试验中,矩阵的行向量由14个元素构成。主成份分为正常主成分和异常主成份,它们分别代表了网络中的正常流量和异常流量,二者的区别主要体现在变化趋势上。正常主成份随时间的变化较为平缓,呈现出明显的周期性;异常主成份随时间的变化幅度较大,呈现出较强的突发性。根据采样数据,判断正常主成分的算法是:依据主成分和采样数据计算出第一主成分变量,求第一主成分变量这72个数值的均值μ1和方差σ1,找出第一主成分变量中偏离均值最大的元素,判断其偏离均值的程度是否超过了3σ1。如果第一主成分变量的最大偏离超过了阈值,取第一主成份为正常主成分,其他主成份均为异常主成分,取主成份转换矩阵U =[L 1];如果最大偏离未超过阈值,转入判断第下一主成分,最后取得U =[L 1……L i -1]。第一主成份具有较强的周期性,随后的主成份的周期性渐弱,突发性渐强,这也体现了网络中正常流量和异常流量的差别。在得到主成份转换矩阵U后,针对每一个采样数据Sk =xk 1,xk 2……xk p ),将其主成份投影到p维空间进行重建,重建后的向量为:Tk =UU T (Sk -X )T计算该采样数据重建前与重建后向量之间的欧氏距离,称之为残差:dk =||Sk -Tk ||根据采样数据,我们分别计算72次采样数据的残差,然后求其均值μd 和标准差σd 。转换矩阵U、残差均值μd 、残差标准差σd 是我们构造的网络流量模型,也是进行流量异常检测的前提条件。 3.2 检测阶段在通过建模得到网络流量模型后,对于新的观测向量N,(n 1,n 2……np ),采用与建模阶段类似的分析方法,将其中心化:Nd =N -X然后将中心化后的向量投影到p维空间重建,并计算残差:Td =UUTNdTd =||Nd -Td ||如果该观测值正常,则重建前与重建后向量应该非常相似,计算出的残差d 应该很小;如果观测值代表的流量与建模时发生了明显变化,则计算出的残差值会较大。本项目利用如下算法对残差进行量化:3.3 评估阶段评估阶段的任务是根据当前观测向量的量化值q (d ),判断网络流量是否正常。根据经验,如果|q (d )|<5,网络基本正常;如果5≤|q (d )|<10,网络轻度异常;如果10≤|q (d )|,网络重度异常。4 实验结果分析利用863-917网络安全监测平台,对北京电信骨干网流量进行持续监测,我们提取6小时的观测数据,由于篇幅所限,我们给出图1—4的时间序列曲线。由图1—4可知单独利用任何一个曲线都难以判定异常,而利用本算法可以容易地标定异常发生的时间。本算法计算结果如图5所示,异常发生时间在图5中标出。我们利用863-917平台的回溯功能对于异常发生时间进行进一步的分析,发现在标出的异常时刻,一个大规模的僵尸网络对网外的3个IP地址发起了大规模的拒绝服务攻击。 5 结束语本文提出一种基于主成分分析的方法来划分子空间,分析和发现网络中的异常事件。本方法能够准确快速地标定异常发生的时间点,从而帮助网络安全应急响应部门及时发现宏观网络的流量异常状况,为迅速解决网络异常赢得时间。试验表明,我们采用的14个特征构成的分析矩阵具有较好的识别准确率和分析效率,我们接下来将会继续寻找更具有代表性的特征来构成数据矩阵,并研究更好的特征矩阵构造方法来进一步提高此方法的识别率,并将本方法推广到短时分析中。6 参考文献[1] XU K, ZHANG Z L, BHATTACHARYYA S. Profiling Internet backbone traffic: Behavior models and applications [C]// Proceedings of ACM SIGCOMM, Aug 22- 25, 2005, Philadelphia, PA, USA. New York, NY,USA:ACM,2005:169-180.[2] HAWKINS D M, QQUI P, KANG C W. The change point model for statistical process control [J]. Journal of Quality Technology,2003, 35(4).[3] THOTTAN M, JI C. Anomaly detection in IP networks [J]. IEEE Transactions on Signal Processing, 2003, 51 )8):2191-2204.[4] BARFORD P, KLINE J, PLONKA D, et al. A signal analysis of network traffic anomalies [C]//Proceedings of ACM SIGCOMM Intemet Measurement Workshop (IMW 2002), Nov 6-8, 2002, Marseilles, France. New York, NY,USA:ACM, 2002:71-82.[5] LAKHINA A, CROVELLA M, DIOT C. Mining anomalies using traffic feature distributions [C]// Proceedings of SIGCOMM, Aug 22-25, 2005, Philadelphia, PA, USA. New York, NY,USA: ACM, 2005: 217-228.[6] LAKHINA A, CROVELLA M, DIOT C. Diagnosing network-wide traffic anomalies [C]// Proceedings of ACM SIGCOMM, Aug 30 - Sep 3, 2004, Portland, OR, USA. New York, NY,USA: ACM, 2004: 219-230.[7] SCHWELLER R, GUPTA A, PARSONS E, et al. Reversible sketches for efficient and accurate change detection over network data streams [C]//Proceedings of ACM SIGCOMM Internet Measurement Conference (IMC’04), Oct 25-27, 2004, Taormina, Sicily, Italy. New York, NY,USA: ACM, 2004:207-212.[8] MAHONEY M V, CHAN P K. Learning rules for anomaly detection of hostile network traffic [C]// Proceedings of International Conference on Data Mining (ICDM’03), Nov 19-22, Melbourne, FL, USA . Los Alamitos, CA, USA: IEEE Computer Society, 2003:601-604.
Ⅳ 如何检测网络数据丢包的现象(网络行家进)
1、同时按下键盘中的Win + R 组合快捷。
Ⅳ DPI的检测技术
基本技术
DPI技术,即DPI(Deep Packet Inspection)深度包检测技术是一种基于应用层的流量检测和控制技术,当IP数据包、TCP或UDP数据流通过基于DPI技术的带宽管理系统时,该系统通过深入读取IP包载荷的内容来对OSI七层协议中的应用层信息进行重组,从而得到整个应用程序的内容,然后按照系统定义的管理策略对流量进行整形操作。
基于DPI技术的带宽管理解决方案与我们熟知的防病毒软件系统在某些方面比较类似,即其能识别的应用类型必须为系统已知的,以用户熟知的BT为例,其Handshake的协议特征字为“。BitTorrent Protocol”;换句话说,防病毒系统后台要有一个庞大的病毒特征数据库,基于DPI技术的带宽管理系统也要维护一个应用特征数据库,当流量经过时,通过将解包后的应用信息与后台特征数据库进行比较来确定应用类型;而当有新的应用出现时,后台的应用特征数据库也要更新才能具有对新型应用的识别和控制能力。
重要应用
深度数据包检测(DPI)是一项已经在流量管理、安全和网络分析等方面获得成功的技术,同时该技术能够对网络数据包进行内容分析,但又与header或者基于元数据的数据包检测有所不同,这两种检测通常是由交换机、防火墙和入侵检测系统/IPS设备来执行的。通常的DPI解决方案能够为不同的应用程序提供深度数据包检测。只针对header的处理限制了能够从数据包处理过程中看到的内容,并且不能够检测基于内容的威胁或者区分使用共同通信平台的应用程序。DPI能够检测出数据包的内容及有效负载并且能够提取出内容级别的信息,如恶意软件、具体数据和应用程序类型。
随着网络运营商、互联网服务提供商(ISP)以及类似的公司越来越依赖于其网络以及网络上运行的应用程序的效率,管理带宽和控制通信的复杂性以及安全的需要变得越来越重要。DPI恰好能够提供这些要求,寻求更好的网络管理以及合规的用户企业应该把DPI作为一项重要的技术。
DPI技术首先能够将数据包组装到网络的流量中,数据处理(包括协议分类)接着可以从流量内容中提取信息,流量重组和内容提取都需要大量处理能力,尤其是在高流量的数据流中。成功的DPI技术必须能够提供基本功能,如高性能计算和对分析任务的灵活的支持。
DPI处理部门必须能够提供符合通信网络性能的可扩张性和性能,深度内容检测要求不仅仅是header检测更加多的处理。因此,DPI通常使用并行处理结构来加快计算任务。DPI技术最终能够向用户提供从网络流量中提取出的信息,实际内容处理可能与提取出的信息有很大差异,DPI技术的表现有点像一个平台,提供内容处理的实用工具,但是可以让用户决定处理哪些内容。
分离网络流量
很多服务供应商现在使用DPI来将流量分为低延时(语音)、保证延时(网络流量)、保证交付(应用流量)和尽最大努力交付的应用程序(文件共享)。使用这种分类,他们可以更好的根据关键任务流量、非关键流量来优化资源并减少网络拥挤。因为廉价的带宽,服务供应商可以增加增值服务来获得额外的收入,包括安全、高峰使用管理、内容计费和针对性的广告。这些都需要对网络流量的深度检测。
管理网络性能
拥有大型网络覆盖很多地理区域的企业在他们的内部网络间可能运行着完全不同的通信类型。除了控制成本和带宽使用外,安全一直是一个挑战,这要求对网络应用程序流量的理解。这些企业已经开始看到DPI分析带来的好处,例如,网络管理员可以使用DPI技术来控制网络性能,当网络性能较低时,限制某种应用程序流量,当性能恢复到正常时,再提升流量。
现在越来越多的网络安全功能需要有效载荷级别的知识,数据泄漏防护要求深度理解通过线路发送的实际内容。应用层防火墙负责有效载荷的内容,而不是header内容。在云计算中的安全服务提供商,如反垃圾邮件或者web过滤服务等供应商,必须获取通过多个客户通信的实时可见的内容,以便迅速获取抵御威胁和攻击的信息。这样也要求内容级别的情报。
传统上来说,这些安全功能都由特殊用途的技术所提供,这些可能包括一些DPI功能。例如,IPS就有内置的DPI。保护Web网关同样提供对web内容的DPI分析,但是每种特殊用途技术引用其特殊的目的或者不兼容的软件,都会使网络基础设施效率低下。一个数据包可能会因为多种用途而被进行多次检查。另外,这些技术并不能提供可编程的接口,这就意味着你不能够提取任意信息。
除了安全问题外,DPI对于云计算服务供应商还有着重大的影响,对于云计算供应商而言,服务订阅和用户管理是一个重大挑战。很多供应商使用自身开发的或者现成的技术来管理服务订阅,他们发现这样做既缺乏可扩展性又不能为复杂的管理任务提供足够的信息。另一方面,DPI能够提供关于用户流量、应用程序使用、内容传递和异常模式的情报信息,这些服务供应商还可以利用可编程界面来收集其他有用信息,如市场营销情报和客户档案等。
Ⅵ 哪种安全技术用于被动监控网络流量
Sflow技术
1.什么是Sflow?
采样流Sflow(Sampled Flow)是一种基于报文采样的网络流量监控技术,主要用于对网络流量进行统计分析。
2.为什么会出现Sflow?
因为企业级网络规模小、组网灵活、易受攻击等特点,所以企业级网络更容易初夏按组网或者攻击导致的流量业务异常,于是企业用户需要一种以设备接口为基本采样单元的流量监控技术来实时监控流量状况,及时发现异常流量以及攻击流量的源头,从而保证企业网络的正常稳定运行。在此背景下,Sflow应运而生。
成都联创优科 幼儿园智能化解决方案提供商 为您解答
Ⅶ 第七章 流量监控与分析工具常用的网络流量监测方法有几种分别是什么
所谓网络流量分析,是指通过一定的技术手段,实时监测用户网络七层结构中各层的流量分布,进行协议、流量的综合分析,从而有效的发现、预防网络流量和应用上的瓶颈,为网络性能的优化提供依据。通过流量分析帮助管理人员了解到网络中哪个用户正在大量的下载或者上传数据,判定出网络中是哪个用户在占用了大量的带宽,是由于哪个用户造成了网络的缓慢。通过流量分析管理,可以使网络管理人员掌握网络负载状况,及时发现网络结构的不合理,或是网络性能瓶颈,根据网内应用及不同业务使用情况,为用户提供高品质的网络服务,避免了网络带宽和服务器瓶颈问题。通过流量分析管理,可以使网络管理人员快速掌握网络流量的实时状况,网内应用及不同业务在不同的时间段的使用情况,快速展示某个时间段内的流量概况,帮助管理人员分析网络流量的忙闲时。目前市面上的网络流量分析软件很多,但是实现方式大致分为三类,通过这三种网络流量分析的采集技术,来实现网络流量的分析。2、端口镜像(Portmirroring),也叫做端口扫描或端口监控功能,是在很多管理型交换机中的一个功能,其被用在一个网络交换机上来发送所有分组的拷贝,在一个交换机端口查看来监控在另一个交换机端口的网络连接。也就是把所有的交换机端口的数据,都拷贝一份到这个端口上,所有的数据都进行采集。3、通过协议如netflow或者netstream等。根据需求和采集技术特点选择上述的三种技术,各有各的优点和缺点,其中的网络混杂模式,主要用于一个比较小的网络中,一般一个小的局域网内使用,比如网吧等,通过这种技术实现的软件比较多,如果sniffer等。缺点也很明显,就是对网络带宽的占用比较大。建议在非关键性的小网络中使用。另外一种通过端口镜像实现,特点是通过交换机来实现,缺点也比较明显,就是所有的端口的数据都要拷贝一份给监控端口,增加了交换机的负担,比较严重的影响交换机的性能。一般在公司网络的出口交换机上使用,比如监控公司中人员的互联网连接等。第三种通过思科的netflow协议或者华为的netstream协议,特点是占用网络带宽最小,切采集的数据最全,一般用在比较大的企业网络中,原理就是交换机本身将通过的数据计数,而不做数据的拷贝。这样,就大大降低了交换机的负担。市面上的软件也比较多,比较重要的厂商如摩卡软件等。下面以摩卡软件的NTA软件来举例说明网络流量分析的功能。摩卡软件网络流量分析的优势摩卡软件在行业内具有十年的IT运维管理经验,摩卡软件在全国超过23家的大客户现场积累了深厚的应用平台运维管理经验,其中对于网络流量监控的优势在于:支持协议种类多:从思科的netflow到华为的netstream,到IPFIX、sflow等都支持。适用的范围比较广:从宏观上监控整个网络中的流量,从二层到七层,所有的流量的情况。支持自定义的应用的监控:软件支持自定义的网络应用的监控。友好的用户界面:从用户的界面出发,更容易读懂和使用。
Ⅷ 局域网里如何侦测网络流量不正常的主机
对于流量 暂时没有什么特别好的办法
可以用show interface来查看各个端口的流量 这样做的缺点就是比较繁琐 建议使用一些流量检测软件
至于ARP攻击 可以用 show arp查看arp表 然后show mac-address-table
查看mac地址表 将两个表进行对比 做出判断 然后将mac地址表中对应的机器端口shut掉就可以了
Ⅸ 首汽约车app网络异常检查网络设置什么意思
因为你在安装的时候,可能勾选了不允许的选项,建议重新安装,给于APP所有的权限