❶ 如何在R语言中进行神经网络模型的建立
不能发链接,所以我复制过来了。
#载入程序和数据
library(RSNNS)
data(iris)
#将数据顺序打乱
iris <- iris[sample(1:nrow(iris),length(1:nrow(iris))),1:ncol(iris)]
#定义网络输入
irisValues <- iris[,1:4]
#定义网络输出,并将数据进行格式转换
irisTargets <- decodeClassLabels(iris[,5])
#从中划分出训练样本和检验样本
iris <- splitForTrainingAndTest(irisValues, irisTargets, ratio=0.15)
#数据标准化
iris <- normTrainingAndTestSet(iris)
#利用mlp命令执行前馈反向传播神经网络算法
model <- mlp(iris$inputsTrain, iris$targetsTrain, size=5, learnFunc="Quickprop", learnFuncParams=c(0.1, 2.0, 0.0001, 0.1),maxit=100, inputsTest=iris$inputsTest, targetsTest=iris$targetsTest)
#利用上面建立的模型进行预测
predictions <- predict(model,iris$inputsTest)
#生成混淆矩阵,观察预测精度
confusionMatrix(iris$targetsTest,predictions)
#结果如下:
# predictions
#targets 1 2 3
# 1 8 0 0
# 2 0 4 0
# 3 0 1 10
❷ keras怎么可视化神经网络的结构
可以用summary,也可以用plot_model 画出更直观的结构图。
❸ 关于Python如何用Keras训练神经网络更稳定的问题
Python由荷兰数学和计算机科学研究学会的Guido van Rossum 于1990 年代初设计,作为一门叫做ABC语言的替代品。Python提供了高效的高级数据结构,还能简单有效地面向对象编程。
❹ 如何用keras实现多变量输入神经网络
要点如下:
1、神经网络基本结构,应该是输入层-若干个隐含层-输出层。
2、输入层应该有7个输入变量。
3、隐含层层数自定,但每层要超过7个神经元。
4、输出层可以用softmax之类的函数,将隐含层的输出归并成一个。
代码请自行编写。
❺ python关于如何进行Keras神经网络可视化的
是可视化网络结构吗?
可以使用summary函数 也可是使用下面的代码
fromkeras.utilsimportplot_model
plot_model(model,to_file='model.png',show_shapes=True)
如果是可视化网络所学习到的东西的话 可以去这里找找思路网页链接
❻ 怎么将keras模型设置为全局变量
可以直接进入,进入后对帐户和密码进行设置即可。如果设置了Administrator口令,安全”窗口,点击选项中“设置”按钮,出现进入窗口,直接点进入即可。
❼ 怎样用python构建一个卷积神经网络
用keras框架较为方便
首先安装anaconda,然后通过pip安装keras
❽ 怎样用python构建一个卷积神经网络
用keras框架较为方便
首先安装anaconda,然后通过pip安装keras
以下转自wphh的博客。
#coding:utf-8
'''
GPUruncommand:
THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32pythoncnn.py
CPUruncommand:
pythoncnn.py
2016.06.06更新:
这份代码是keras开发初期写的,当时keras还没有现在这么流行,文档也还没那么丰富,所以我当时写了一些简单的教程。
现在keras的API也发生了一些的变化,建议及推荐直接上keras.io看更加详细的教程。
'''
#导入各种用到的模块组件
from__future__importabsolute_import
from__future__importprint_function
fromkeras.preprocessing.imageimportImageDataGenerator
fromkeras.modelsimportSequential
fromkeras.layers.coreimportDense,Dropout,Activation,Flatten
fromkeras.layers.advanced_activationsimportPReLU
fromkeras.layers.,MaxPooling2D
fromkeras.optimizersimportSGD,Adadelta,Adagrad
fromkeras.utilsimportnp_utils,generic_utils
fromsix.movesimportrange
fromdataimportload_data
importrandom
importnumpyasnp
np.random.seed(1024)#forreprocibility
#加载数据
data,label=load_data()
#打乱数据
index=[iforiinrange(len(data))]
random.shuffle(index)
data=data[index]
label=label[index]
print(data.shape[0],'samples')
#label为0~9共10个类别,keras要求格式为binaryclassmatrices,转化一下,直接调用keras提供的这个函数
label=np_utils.to_categorical(label,10)
###############
#开始建立CNN模型
###############
#生成一个model
model=Sequential()
#第一个卷积层,4个卷积核,每个卷积核大小5*5。1表示输入的图片的通道,灰度图为1通道。
#border_mode可以是valid或者full,具体看这里说明:http://deeplearning.net/software/theano/library/tensor/nnet/conv.html#theano.tensor.nnet.conv.conv2d
#激活函数用tanh
#你还可以在model.add(Activation('tanh'))后加上dropout的技巧:model.add(Dropout(0.5))
model.add(Convolution2D(4,5,5,border_mode='valid',input_shape=(1,28,28)))
model.add(Activation('tanh'))
#第二个卷积层,8个卷积核,每个卷积核大小3*3。4表示输入的特征图个数,等于上一层的卷积核个数
#激活函数用tanh
#采用maxpooling,poolsize为(2,2)
model.add(Convolution2D(8,3,3,border_mode='valid'))
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(2,2)))
#第三个卷积层,16个卷积核,每个卷积核大小3*3
#激活函数用tanh
#采用maxpooling,poolsize为(2,2)
model.add(Convolution2D(16,3,3,border_mode='valid'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
#全连接层,先将前一层输出的二维特征图flatten为一维的。
#Dense就是隐藏层。16就是上一层输出的特征图个数。4是根据每个卷积层计算出来的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4
#全连接有128个神经元节点,初始化方式为normal
model.add(Flatten())
model.add(Dense(128,init='normal'))
model.add(Activation('tanh'))
#Softmax分类,输出是10类别
model.add(Dense(10,init='normal'))
model.add(Activation('softmax'))
#############
#开始训练模型
##############
#使用SGD+momentum
#model.compile里的参数loss就是损失函数(目标函数)
sgd=SGD(lr=0.05,decay=1e-6,momentum=0.9,nesterov=True)
model.compile(loss='categorical_crossentropy',optimizer=sgd,metrics=["accuracy"])
#调用fit方法,就是一个训练过程.训练的epoch数设为10,batch_size为100.
#数据经过随机打乱shuffle=True。verbose=1,训练过程中输出的信息,0、1、2三种方式都可以,无关紧要。show_accuracy=True,训练时每一个epoch都输出accuracy。
#validation_split=0.2,将20%的数据作为验证集。
model.fit(data,label,batch_size=100,nb_epoch=10,shuffle=True,verbose=1,validation_split=0.2)
"""
#使用dataaugmentation的方法
#一些参数和调用的方法,请看文档
datagen=ImageDataGenerator(
featurewise_center=True,#setinputmeanto0overthedataset
samplewise_center=False,#seteachsamplemeanto0
featurewise_std_normalization=True,#divideinputsbystdofthedataset
samplewise_std_normalization=False,#divideeachinputbyitsstd
zca_whitening=False,#applyZCAwhitening
rotation_range=20,#(degrees,0to180)
width_shift_range=0.2,#(fractionoftotalwidth)
height_shift_range=0.2,#randomlyshiftimagesvertically(fractionoftotalheight)
horizontal_flip=True,#randomlyflipimages
vertical_flip=False)#randomlyflipimages
#
#(std,mean,)
datagen.fit(data)
foreinrange(nb_epoch):
print('-'*40)
print('Epoch',e)
print('-'*40)
print("Training...")
#
progbar=generic_utils.Progbar(data.shape[0])
forX_batch,Y_batchindatagen.flow(data,label):
loss,accuracy=model.train(X_batch,Y_batch,accuracy=True)
progbar.add(X_batch.shape[0],values=[("trainloss",loss),("accuracy:",accuracy)])
"""
❾ 如何用Keras自定义层
lambda层是没有参数学习的功能的,你要做的就是将每张图片上像素的最大值和最小值的函数包装进lambda层。你的输入是(batch,224,224,3),写一个在每个通道上提取空间特征的最大最小值的函数。假设为spatial_max(input)和spatial_min(input),那么新层你可以直接写为new_layer1=Lambda(spatial_max, x : x)(input)
new_layer2=Lambda(spatial_min, x : x)(input)