Ⅰ 网络安全未来发展趋势怎么样
网络安全态势紧张,网络安全事件频发
据国家互联网应急中心(CNCERT),2019年上半年,CNCERT新增捕获计算机恶意程序样本数量约3200万个,计算机恶意程序传播次数日均达约998万次,CNCERT抽样监测发现,2019年上半年我国境内峰值超过10Gbps的大流量分布式拒绝服务攻击(DDoS攻击)事件数量平均每月约4300起,同比增长18%;国家信息安全漏洞共享平台(CNVD)收录通用型安全漏洞5859个。网站安全方面,2019年上半年,CNCERT自主监测发现约4.6万个针对我国境内网站的仿冒页面,境内外约1.4万个IP地址对我国境内约2.6万个网站植入后门,同比增长约1.2倍,可见我国网络安全态势紧张。
网络安全行业的发展短期内是通过频繁出现的安全事件驱动,短中期离不开国家政策合规,中长期则是通过信息化、云计算、万物互联等基础架构发展驱动。2020年网络安全领域将进一步迎来网络安全合规政策及安全事件催化,例如自2020年1月1日起施行《中华人民共和国密码法》,2020年3月1日起施行《网络信息内容生态治理规定》等。2020年作为
“十三五”收官之年,将陆续开始编制网络安全十四五规划。在各种因素的驱动下,2020年我国网络安全行业将得到进一步发展。
——以上数据来源于前瞻产业研究院《中国网络安全行业发展前景预测与投资战略规划分析报告》。
Ⅱ 机器学习与人工智能将应用于哪些安全领域
我的理解是这样的:
人工智能:给机器赋予人类的智能,让机器能够像人类那样独立思考。当然,目前的人工智能没有发展到很高级的程度,这种智能与人类的大脑相比还是处于非常幼稚的阶段,但目前我们可以让计算机掌握一定的知识,更加智能化的帮助我们实现简单或复杂的活动。
2.机器学习。通俗的说就是让机器自己去学习,然后通过学习到的知识来指导进一步的判断。举个最简单的例子,我们训练小狗狗接飞碟时,当小狗狗接到并送到主人手中时,主人会给一定的奖励,否则会有惩罚。于是狗狗就渐渐学会了接飞碟。同样的道理,我们用一堆的样本数据来让计算机进行运算,样本数据可以是有类标签的,并设计惩罚函数,通过不断的迭代,机器就学会了怎样进行分类,使得惩罚最小。然后用学习到的分类规则进行预测等活动。
3.数据挖掘。数据挖掘是一门交叉性很强的学科,可以用到机器学习算法以及传统统计的方法,最终的目的是要从数据中挖掘到为我所用的知识,从而指导人们的活动。所以我认为数据挖掘的重点在于应用,用何种算法并不是很重要,关键是能够满足实际应用背景。而机器学习则偏重于算法本身的设计。
4.模式识别。我觉得模式识别偏重于对信号、图像、语音、文字、指纹等非直观数据方面的处理,如语音识别,人脸识别等,通过提取出相关的特征,利用这些特征来进行搜寻我们想要找的目标。
比较喜欢这方面的东西,一点肤浅的认识,很高兴与你交流。
Ⅲ 机器学习 神经网络 在信息安全领域有哪些应用
智能路由器和智能网关上面,对入侵检测、包过滤进行智能检测和过滤;
2. 在云计算的可度量安全性上大有可为,安全的属性对每个人都不一样,能够通过机器学习,对每一个用户在安全性和方便性上找一个更 好的平衡点。
3. 在病毒、木马样本分析,形成主动防御体系,是需要机器学习的。
4. 在系统漏洞检测,特别是深
Ⅳ 人工智能在网络安全领域的应用有哪些
近年来,在网络安全防御中出现了多智能体系统、神经网络、专家系统、机器学习等人工智能技术。一般来说,AI主要应用于网络安全入侵检测、恶意软件检测、态势分析等领域。
1、人工智能在网络安全领域的应用——在网络入侵检测中。
入侵检测技术利用各种手段收集、过滤、处理网络异常流量等数据,并为用户自动生成安全报告,如DDoS检测、僵尸网络检测等。目前,神经网络、分布式代理系统和专家系统都是重要的人工智能入侵检测技术。2016年4月,麻省理工学院计算机科学与人工智能实验室(CSAIL)与人工智能初创企业PatternEx联合开发了基于人工智能的网络安全平台AI2。通过分析挖掘360亿条安全相关数据,AI2能够准确预测、检测和防范85%的网络攻击。其他专注于该领域的初创企业包括Vectra Networks、DarkTrace、Exabeam、CyberX和BluVector。
2、人工智能在网络安全领域的应用——预测恶意软件防御。
预测恶意软件防御使用机器学习和统计模型来发现恶意软件家族的特征,预测进化方向,并提前防御。目前,随着恶意病毒的增多和勒索软件的突然出现,企业对恶意软件的保护需求日益迫切,市场上出现了大量应用人工智能技术的产品和系统。2016年9月,安全公司SparkCognition推出了DeepArmor,这是一款由人工智能驱动的“Cognition”杀毒系统,可以准确地检测和删除恶意文件,保护网络免受未知的网络安全威胁。在2017年2月举行的RSA2017大会上,国内外专家就人工智能在下一代防病毒领域的应用进行了热烈讨论。预测恶意软件防御的公司包括SparkCognition、Cylance、Deep Instinct和Invincea。
3、人工智能在网络安全领域的应用——在动态感知网络安全方面。
网络安全态势感知技术利用数据融合、数据挖掘、智能分析和可视化技术,直观地显示和预测网络安全态势,为网络安全预警和防护提供保障,在不断自我学习的过程中提高系统的防御水平。美国公司Invincea开发了基于人工智能的旗舰产品X,以检测未知的威胁,而英国公司Darktrace开发了一种企业安全免疫系统。国内伟达安防展示了自主研发的“智能动态防御”技术,以及“人工智能”与“动态防御”六大“魔法”系列产品的整合。其他参与此类研究的初创企业包括LogRhythm、SecBI、Avata Intelligence等。
此外,人工智能应用场景被广泛应用于网络安全运行管理、网络系统安全风险自评估、物联网安全问题等方面。一些公司正在使用人工智能技术来应对物联网安全挑战,包括CyberX、network security、PFP、Dojo-Labs等。
以上就是《人工智能在网络安全领域的应用是什么?这个领域才是最关键的》,近年来,在网络安全防御中出现了多智能体系统、神经网络、专家系统、机器学习等人工智能技术,如果你想知道更多的人工智能安全的发展,可以点击本站其他文章进行学习。
Ⅳ 信息与网络安全需要大数据安全分析
信息与网络安全需要大数据安全分析
毫无疑问,我们已经进入了大数据(Big Data)时代。人类的生产生活每天都在产生大量的数据,并且产生的速度越来越快。根据IDC和EMC的联合调查,到2020年全球数据总量将达到40ZB。2013年,Gartner将大数据列为未来信息架构发展的10大趋势之首。Gartner预测将在2011年到2016年间累计创造2320亿美元的产值。
大数据早就存在,只是一直没有足够的基础实施和技术来对这些数据进行有价值的挖据。随着存储成本的不断下降、以及分析技术的不断进步,尤其是云计算的出现,不少公司已经发现了大数据的巨大价值:它们能揭示其他手段所看不到的新变化趋势,包括需求、供给和顾客习惯等等。比如,银行可以以此对自己的客户有更深入的了解,提供更有个性的定制化服务;银行和保险公司可以发现诈骗和骗保;零售企业更精确探知顾客需求变化,为不同的细分客户群体提供更有针对性的选择;制药企业可以以此为依据开发新药,详细追踪药物疗效,并监测潜在的副作用;安全公司则可以识别更具隐蔽性的攻击、入侵和违规。
当前网络与信息安全领域,正在面临着多种挑战。一方面,企业和组织安全体系架构的日趋复杂,各种类型的安全数据越来越多,传统的分析能力明显力不从心;另一方面,新型威胁的兴起,内控与合规的深入,传统的分析方法存在诸多缺陷,越来越需要分析更多的安全信息、并且要更加快速的做出判定和响应。信息安全也面临大数据带来的挑战。安全数据的大数据化
安全数据的大数据化主要体现在以下三个方面:
1) 数据量越来越大:网络已经从千兆迈向了万兆,网络安全设备要分析的数据包数据量急剧上升。同时,随着NGFW的出现,安全网关要进行应用层协议的分析,分析的数据量更是大增。与此同时,随着安全防御的纵深化,安全监测的内容不断细化,除了传统的攻击监测,还出现了合规监测、应用监测、用户行为监测、性能检测、事务监测,等等,这些都意味着要监测和分析比以往更多的数据。此外,随着APT等新型威胁的兴起,全包捕获技术逐步应用,海量数据处理问题也日益凸显。
2) 速度越来越快:对于网络设备而言,包处理和转发的速度需要更快;对于安管平台、事件分析平台而言,数据源的事件发送速率(EPS,Event per Second,事件数每秒)越来越快。
3) 种类越来越多:除了数据包、日志、资产数据,安全要素信息还加入了漏洞信息、配置信息、身份与访问信息、用户行为信息、应用信息、业务信息、外部情报信息等。
安全数据的大数据化,自然引发人们思考如何将大数据技术应用于安全领域。
传统的安全分析面临挑战
安全数据的数量、速度、种类的迅速膨胀,不仅带来了海量异构数据的融合、存储和管理的问题,甚至动摇了传统的安全分析方法。
当前绝大多数安全分析工具和方法都是针对小数据量设计的,在面对大数据量时难以为继。新的攻击手段层出不穷,需要检测的数据越来越多,现有的分析技术不堪重负。面对天量的安全要素信息,我们如何才能更加迅捷地感知网络安全态势?
传统的分析方法大都采用基于规则和特征的分析引擎,必须要有规则库和特征库才能工作,而规则和特征只能对已知的攻击和威胁进行描述,无法识别未知的攻击,或者是尚未被描述成规则的攻击和威胁。面对未知攻击和复杂攻击如APT等,需要更有效的分析方法和技术!如何做到知所未知?
面对天量安全数据,传统的集中化安全分析平台(譬如SIEM,安全管理平台等)也遭遇到了诸多瓶颈,主要表现在以下几方面:
——高速海量安全数据的采集和存储变得困难
——异构数据的存储和管理变得困难
——威胁数据源较小,导致系统判断能力有限
——对历史数据的检测能力很弱
——安全事件的调查效率太低
——安全系统相互独立,无有效手段协同工作
——分析的方法较少
——对于趋势性的东西预测较难,对早期预警的能力比较差
——系统交互能力有限,数据展示效果有待提高
从上世纪80年代入侵检测技术的诞生和确立以来,安全分析已经发展了很长的时间。当前,信息与网络安全分析存在两个基本的发展趋势:情境感知的安全分析与智能化的安全分析。
Gartner在2010年的一份报告中指出,“未来的信息安全将是情境感知的和自适应的”。所谓情境感知,就是利用更多的相关性要素信息的综合研判来提升安全决策的能力,包括资产感知、位置感知、拓扑感知、应用感知、身份感知、内容感知,等等。情境感知极大地扩展了安全分析的纵深,纳入了更多的安全要素信息,拉升了分析的空间和时间范围,也必然对传统的安全分析方法提出了挑战。
同样是在2010年,Gartner的另一份报告指出,要“为企业安全智能的兴起做好准备”。在这份报告中,Gartner提出了安全智能的概念,强调必须将过去分散的安全信息进行集成与关联,独立的分析方法和工具进行整合形成交互,从而实现智能化的安全分析与决策。而信息的集成、技术的整合必然导致安全要素信息的迅猛增长,智能的分析必然要求将机器学习、数据挖据等技术应用于安全分析,并且要更快更好地的进行安全决策。
信息与网络安全需要大数据安全分析
安全数据的大数据化,以及传统安全分析所面临的挑战和发展趋势,都指向了同一个技术——大数据分析。正如Gartner在2011年明确指出,“信息安全正在变成一个大数据分析问题”。
于是,业界出现了将大数据分析技术应用于信息安全的技术——大数据安全分析(Big Data Security Analysis,简称BDSA),也有人称做针对安全的大数据分析(Big Data Analysis for Security)。
借助大数据安全分析技术,能够更好地解决天量安全要素信息的采集、存储的问题,借助基于大数据分析技术的机器学习和数据挖据算法,能够更加智能地洞悉信息与网络安全的态势,更加主动、弹性地去应对新型复杂的威胁和未知多变的风险。
Ⅵ 如何对社会安全事件进行预测和特征提取
机器学习应用在安全领域,尤其是各种攻击检测(对外的入侵检测与对内的内部威胁检测)中,相信很多人早已习以为常。当前机器学习应用的焦点在于能够及时检测出系统/组织中发生的攻击威胁,从而缩短攻击发生到应急响应的时间差。
但是即便是最理想的威胁检测系统,当发现威胁报警时,威胁大多已经发生,对系统/组织的危害已经造成,因此检测永远只能作为一种相对被动的安全机制。因此,学界和业界开始将目光投向攻击威胁的事先防御,即预测机制的研究。
基于安全态势感知技术实现的网络安全事件预测方法,相信可以给感兴趣的广大攻城狮、程序猿们带来启发
Ⅶ 如何利用神经网络或者机器学习进行变量预测问题
现实生活中预测通常难做到精准,比如股市,自然灾害, 长久的天气预测。 在市场这种系统里, 有两个关键要素, 一个是个体和个体之间的互相作用(博弈),一个是系统与外部环境(地球资源)之间的相互作用(反馈),因此而形成复杂模式
Ⅷ 网络安全未来发展怎么样
首先,从当前的发展趋势来看,在工业互联网的推动下,网络安全未来将受到越来越多的重视,一方面工业互联网进一步推动了互联网与实体领域的结合,这明显拓展了传统的网络应用边界,也使得网络安全对于产业场景的影响越来越大,另一方面在新基建计划的推动下,未来大量的社会资源和产业资源都将全面数据化,这必然会对网络安全提出更多的要求。
从当前的人才培养体系来看,网络安全人才的培养既有本科教育和专科教育,同时也有研究生教育,所以要想成为网络安全人才,途径还是比较多的,可以根据自身的实际情况来选择不同的教育方式。对于当前的职场人来说,如果在条件允许的情况下,通过读研来进入网络安全领域是不错的选择,近些年网络安全方向研究生的就业情况还是不错的。
相对于消费互联网时代来说,在产业互联网时代,网络安全的技术体系将全面拓展到物联网、大数据和人工智能等新兴领域,而这些新兴领域的技术还处在快速的发展过程中,所以这些领域对于安全的要求也比较迫切。以大数据为例,大数据会全面推动数据的价值化进程,大数据自身也会基于数据价值化,来打造一个庞大的价值空间,但是如果没有安全作为保障,大数据必定走不远。
由于网络安全与诸多技术体系都有联系,所以涉及到的内容也比较多,比如物联网的设备层、网络层、平台层、数据层和应用层都有相应的安全要求,所以学习网络安全往往需要一个系统的学习过程,学习难度也相对比较高。由于物联网领域在5G时代的发展潜力非常大,而且物联网作为一个重要的载体,能够承载大数据、云计算和人工智能等一众技术,所以向物联网安全方向发展是一个不错的选择。
学习网络安全需要具有一个扎实的计算机基础知识和网络基础知识,如果未来要从事网络安全领域的研发岗位,还需要具有一个扎实的数学基础。由于整体的知识量非常大,所以学习网络安全首先应该有一个自己的学习切入点,对于动手能力比较强的人来说,可以从网络基础知识开始学起,然后逐渐了解各种网络安全设备的相关知识。
从物联网领域的安全人才需求情况来看,在行业应用领域有大量的人才需求,这些岗位的从业门槛并不高,重点的工作内容在于网络安全方案的设计、部署和维护,比如各种防火墙设备的安全和调试等等,这些内容经过一个系统的学习过程,通常都能够顺利掌握,重点在于一定要多做实验。
最后,在学习网络安全的过程中,并不建议在脱离实践场景的情况下学习,一方面网络安全本身对于实验环境有较高的要求,另一方面在实践过程中积累的知识会有非常强的场景属性。通常情况下,在掌握了基本的安全技术知识之后,应该找一个实习岗位继续提升,在选择实习岗位的时候,可以重点关注一下新兴领域,比如大数据、物联网等等。
Ⅸ 工业互联网时代的风险管理:工业4.0与网络安全
2009年,恶意软件曾操控某核浓缩工厂的离心机,导致所有离心机失控。该恶意软件又称“震网”,通过闪存驱动器入侵独立网络系统,并在各生产网络中自动扩散。通过“震网”事件,我们看到将网络攻击作为武器破坏联网实体工厂的可能。这场战争显然是失衡的:企业必须保护众多的技术,而攻击者只需找到一个最薄弱的环节。
但非常重要的一点是,企业不仅需要关注外部威胁,还需关注真实存在却常被忽略的网络风险,而这些风险正是由企业在创新、转型和现代化过程中越来越多地应用智能互联技术所引致的。否则,企业制定的战略商业决策将可能导致该等风险,企业应管控并降低该等新兴风险。
工业4.0时代,智能机器之间的互联性不断增强,风险因素也随之增多。工业4.0开启了一个互联互通、智能制造、响应式供应网络和定制产品与服务的时代。借助智能、自动化技术,工业4.0旨在结合数字世界与物理操作,推动智能工厂和先进制造业的发展 。但在意图提升整个制造与供应链流程的数字化能力并推动联网设备革命性变革过程中,新产生的网络风险让所有企业都感到措手不及。针对网络风险制定综合战略方案对制造业价值链至关重要,因为这些方案融合了工业4.0的重要驱动力:运营技术与信息技术。
随着工业4.0时代的到来,威胁急剧增加,企业应当考虑并解决新产生的风险。简而言之,在工业4.0时代制定具备安全性、警惕性和韧性的网络风险战略将面临不同的挑战。当供应链、工厂、消费者以及企业运营实现联网,网络威胁带来的风险将达到前所未有的广度和深度。
在战略流程临近结束时才考虑如何解决网络风险可能为时已晚。开始制定联网的工业4.0计划时,就应将网络安全视为与战略、设计和运营不可分割的一部分。
本文将从现代联网数字供应网络、智能工厂及联网设备三大方面研究各自所面临的网络风险。3在工业4.0时代,我们将探讨在整个生产生命周期中(图1)——从数字供应网络到智能工厂再到联网物品——运营及信息安全主管可行的对策,以预测并有效应对网络风险,同时主动将网络安全纳入企业战略。
数字化制造企业与工业4.0
工业4.0技术让数字化制造企业和数字供应网络整合不同来源和出处的数字化信息,推动制造与分销行为。
信息技术与运营技术整合的标志是向实体-数字-实体的联网转变。工业4.0结合了物联网以及相关的实体和数字技术,包括数据分析、增材制造、机器人技术、高性能计算机、人工智能、认知技术、先进材料以及增强现实,以完善生产生命周期,实现数字化运营。
工业4.0的概念在物理世界的背景下融合并延伸了物联网的范畴,一定程度上讲,只有制造与供应链/供应网络流程会经历实体-数字和数字-实体的跨越(图2)。从数字回到实体的跨越——从互联的数字技术到创造实体物品的过程——这是工业4.0的精髓所在,它支撑着数字化制造企业和数字供应网络。
即使在我们 探索 信息创造价值的方式时,从制造价值链的角度去理解价值创造也很重要。在整个制造与分销价值网络中,通过工业4.0应用程序集成信息和运营技术可能会达到一定的商业成果。
不断演变的供应链和网络风险
有关材料进入生产过程和半成品/成品对外分销的供应链对于任何一家制造企业都非常重要。此外,供应链还与消费者需求联系紧密。很多全球性企业根据需求预测确定所需原料的数量、生产线要求以及分销渠道负荷。由于分析工具也变得更加先进,如今企业已经能够利用数据和分析工具了解并预测消费者的购买模式。
通过向整个生态圈引入智能互联的平台和设备,工业4.0技术有望推动传统线性供应链结构的进一步发展,并形成能从价值链上获得有用数据的数字供应网络,最终改进管理,加快原料和商品流通,提高资源利用率,并使供应品更合理地满足消费者需求。
尽管工业4.0能带来这些好处,但数字供应网络的互联性增强将形成网络弱点。为了防止发生重大风险,应从设计到运营的每个阶段,合理规划并详细说明网络弱点。
在数字化供应网络中共享数据的网络风险
随着数字供应网络的发展,未来将出现根据购买者对可用供应品的需求,对原材料或商品进行实时动态定价的新型供应网络。5由于只有供应网络各参与方开放数据共享才可能形成一个响应迅速且灵活的网络,且很难在保证部分数据透明度的同时确保其他信息安全,因此形成新型供应网络并非易事。
因此,企业可能会设法避免信息被未授权网络用户访问。 此外,他们可能还需对所有支撑性流程实施统一的安全措施,如供应商验收、信息共享和系统访问。企业不仅对这些流程拥有专属权利,它们也可以作为获取其他内部信息的接入点。这也许会给第三方风险管理带来更多压力。在分析互联数字供应网络的网络风险时,我们发现不断提升的供应链互联性对数据共享与供应商处理的影响最大(图3)。
为了应对不断增长的网络风险,我们将对上述两大领域和应对战略逐一展开讨论。
数据共享:更多利益相关方将更多渠道获得数据
企业将需要考虑什么数据可以共享,如何保护私人所有或含有隐私风险的系统和基础数据。比 如,数字供应网络中的某些供应商可能在其他领域互为竞争对手,因此不愿意公开某些类型的数据,如定价或专利品信息。此外,供应商可能还须遵守某些限制共享信息类型的法律法规。因此,仅公开部分数据就可能让不良企图的人趁机获得其他信息。
企业应当利用合适的技术,如网络分段和中介系统等,收集、保护和提供信息。此外,企业还应在未来生产的设备中应用可信的平台模块或硬件安全模块等技术,以提供强大的密码逻辑支持、硬件授权和认证(即识别设备的未授权更改)。
将这种方法与强大的访问控制措施结合,关键任务操作技术在应用点和端点的数据和流程安全将能得到保障。
在必须公开部分数据或数据非常敏感时,金融服务等其他行业能为信息保护提供范例。目前,企业纷纷开始对静态和传输中的数据应用加密和标记等工具,以确保数据被截获或系统受损情况下的通信安全。但随着互联性的逐步提升,金融服务企业意识到,不能仅从安全的角度解决数据隐私和保密性风险,而应结合数据管治等其他技术。事实上,企业应该对其所处环境实施风险评估,包括企业、数字供应网络、行业控制系统以及联网产品等,并根据评估结果制定或更新网络风险战略。总而言之,随着互联性的不断增强,上述所有的方法都能找到应实施更高级预防措施的领域。
供应商处理:更广阔市场中供应商验收与付款
由于新伙伴的加入将使供应商体系变得更加复杂,核心供应商群体的扩张将可能扰乱当前的供应商验收流程。因此,追踪第三方验收和风险的管治、风险与合规软件需要更快、更自主地反应。此外,使用这些应用软件的信息安全与风险管理团队还需制定新的方针政策,确保不受虚假供应商、国际制裁的供应商以及不达标产品分销商的影响。消费者市场有不少类似的经历,易贝和亚马逊就曾发生过假冒伪劣商品和虚假店面等事件。
区块链技术已被认为能帮助解决上述担忧并应对可能发生的付款流程变化。尽管比特币是建立货币 历史 记录的经典案例,但其他企业仍在 探索 如何利用这个新工具来决定商品从生产线到各级购买者的流动。7创建团体共享 历史 账簿能建立信任和透明度,通过验证商品真实性保护买方和卖方,追踪商品物流状态,并在处理退换货时用详细的产品分类替代批量分拣。如不能保证产品真实性,制造商可能会在引进产品前,进行产品测试和鉴定,以确保足够的安全性。
信任是数据共享与供应商处理之间的关联因素。企业从事信息或商品交易时,需要不断更新其风险管理措施,确保真实性和安全性;加强监测能力和网络安全运营,保持警惕性;并在无法实施信任验证时保护该等流程。
在这个过程中,数字供应网络成员可参考其他行业的网络风险管理方法。某些金融和能源企业所采用的自动交易模型与响应迅速且灵活的数字供应网络就有诸多相似之处。它包含具有竞争力的知识产权和企业赖以生存的重要资源,所有这些与数字供应网络一样,一旦部署到云端或与第三方建立联系就容易遭到攻击。金融服务行业已经意识到无论在内部或外部算法都面临着这样的风险。因此,为了应对内部风险,包括显性风险(企业间谍活动、蓄意破坏等)和意外风险(自满、无知等),软件编码和内部威胁程序必须具备更高的安全性和警惕性。
事实上,警惕性对监测非常重要:由于制造商逐渐在数字供应网络以外的生产过程应用工业4.0技术,网络风险只会成倍增长。
智能生产时代的新型网络风险
随着互联性的不断提高,数字供应网络将面临新的风险,智能制造同样也无法避免。不仅风险的数量和种类将增加,甚至还可能呈指数增长。不久前,美国国土安全部出版了《物联网安全战略原则》与《生命攸关的嵌入式系统安全原则》,强调应关注当下的问题,检查制造商是否在生产过程中直接或间接地引入与生命攸关的嵌入式系统相关的风险。
“生命攸关的嵌入式系统”广义上指几乎所有的联网设备,无论是车间自动化系统中的设备或是在第三方合约制造商远程控制的设备,都应被视为风险——尽管有些设备几乎与生产过程无关。
考虑到风险不断增长,威胁面急剧扩张,工业4.0时代中的制造业必须彻底改变对安全的看法。
联网生产带来新型网络挑战
随着生产系统的互联性越来越高,数字供应网络面临的网络威胁不断增长扩大。不难想象,不当或任意使用临时生产线可能造成经济损失、产品质量低下,甚至危及工人安全。此外,联网工厂将难以承受倒闭或其他攻击的后果。有证据表明,制造商仍未准备好应对其联网智能系统可能引发的网络风险: 2016年德勤与美国生产力和创新制造商联盟(MAPI)的研究发现,三分之一的制造商未对工厂车间使用的工业控制系统做过任何网络风险评估。
可以确定的是,自进入机械化生产时代,风险就一直伴随着制造商,而且随着技术的进步,网络风险不断增强,物理威胁也越来越多。但工业4.0使网络风险实现了迄今为止最大的跨越。各阶段的具体情况请参见图4。
从运营的角度看,在保持高效率和实施资源控制时,工程师可在现代化的工业控制系统环境中部署无人站点。为此,他们使用了一系列联网系统,如企业资源规划、制造执行、监控和数据采集系统等。这些联网系统能够经常优化流程,使业务更加简单高效。并且,随着系统的不断升级,系统的自动化程度和自主性也将不断提高(图5)。
从安全的角度看,鉴于工业控制系统中商业现货产品的互联性和使用率不断提升,大量暴露点将可能遭到威胁。与一般的IT行业关注信息本身不同,工业控制系统安全更多关注工业流程。因此,与传统网络风险一样,智能工厂的主要目标是保证物理流程的可用性和完整性,而非信息的保密性。
但值得注意的是,尽管网络攻击的基本要素未发生改变,但实施攻击方式变得越来越先进(图5)。事实上,由于工业4.0时代互联性越来越高,并逐渐从数字化领域扩展到物理世界,网络攻击将可能对生产、消费者、制造商以及产品本身产生更广泛、更深远的影响(图6)。
结合信息技术与运营技术:
当数字化遇上实体制造商实施工业4.0 技术时必须考虑数字化流程和将受影响的机器和物品,我们通常称之为信息技术与运营技术的结合。对于工业或制造流程中包含了信息技术与运营技术的公司,当我们探讨推动重点运营和开发工作的因素时,可以确定多种战略规划、运营价值以及相应的网络安全措施(图7)。
首先,制造商常受以下三项战略规划的影响:
健康 与安全: 员工和环境安全对任何站点都非常重要。随着技术的发展,未来智能安全设备将实现升级。
生产与流程的韧性和效率: 任何时候保证连续生产都很重要。在实际工作中,一旦工厂停工就会损失金钱,但考虑到重建和重新开工所花费的时间,恢复关键流程可能将导致更大的损失。
检测并主动解决问题: 企业品牌与声誉在全球商业市场中扮演着越来越重要的角色。在实际工作中,工厂的故障或生产问题对企业声誉影响很大,因此,应采取措施改善环境,保护企业的品牌与声誉。
第二,企业需要在日常的商业活动中秉持不同的运营价值理念:
系统的可操作性、可靠性与完整性: 为了降低拥有权成本,减缓零部件更换速度,站点应当采购支持多个供应商和软件版本的、可互操作的系统。
效率与成本规避: 站点始终承受着减少运营成本的压力。未来,企业可能增加现货设备投入,加强远程站点诊断和工程建设的灵活性。
监管与合规: 不同的监管机构对工业控制系统环境的安全与网络安全要求不同。未来企业可能需要投入更多,以改变环境,确保流程的可靠性。
工业4.0时代,网络风险已不仅仅存在于供应网络和制造业,同样也存在于产品本身。 由于产品的互联程度越来越高——包括产品之间,甚至产品与制造商和供应网络之间,因此企业应该明白一旦售出产品,网络风险就不会终止。
风险触及实体物品
预计到2020年,全球将部署超过200亿台物联网设备。15其中很多设备可能会被安装在制造设备和生产线上,而其他的很多设备将有望进入B2B或B2C市场,供消费者购买使用。
2016年德勤与美国生产力和创新制造商联盟(MAPI)的研究结果显示,近一半的制造商在联网产品中采用移动应用软件,四分之三的制造商使用Wi-Fi网络在联网产品间传输数据。16基于上述网络途径的物联通常会形成很多漏洞。物联网设备制造商应思考如何将更强大、更安全的软件开发方法应用到当前的物联网开发中,以应对设备常常遇到的重大网络风险。
尽管这很有挑战性,但事实证明,企业不能期望消费者自己会更新安全设置,采取有效的安全应对措施,更新设备端固件或更改默认设备密码。
比如,2016年10月,一次由Mirai恶意软件引发的物联网分布式拒绝服务攻击,表明攻击者可以利用这些弱点成功实施攻击。在这次攻击中,病毒通过感染消费者端物联网设备如联网的相机和电视,将其变成僵尸网络,并不断冲击服务器直至服务器崩溃,最终导致美国最受欢迎的几家网站瘫痪大半天。17研究者发现,受分布式拒绝服务攻击损害的设备大多使用供应商提供的默认密码,且未获得所需的安全补丁或升级程序。18需要注意的是,部分供应商所提供的密码被硬编码进了设备固件中,且供应商未告知用户如何更改密码。
当前的工业生产设备常缺乏先进的安全技术和基础设施,一旦外围保护被突破,便难以检测和应对此类攻击。
风险与生产相伴而行
由于生产设施越来越多地与物联网设备结合,因此,考虑这些设备对制造、生产以及企业网络所带来的安全风险变得越来越重要。受损物联网设备所产生的安全影响包括:生产停工、设备或设施受损如灾难性的设备故障,以及极端情况下的人员伤亡。此外,潜在的金钱损失并不仅限于生产停工和事故整改,还可能包括罚款、诉讼费用以及品牌受损所导致的收入减少(可能持续数月甚至数年,远远超过事件实际持续的时间)。下文列出了目前确保联网物品安全的一些方法,但随着物品和相应风险的激增,这些方法可能还不够。
传统漏洞管理
漏洞管理程序可通过扫描和补丁修复有效减少漏洞,但通常仍有多个攻击面。攻击面可以是一个开放式的TCP/IP或UDP端口或一项无保护的技术,虽然目前未发现漏洞,但攻击者以后也许能发现新的漏洞。
减少攻击面
简单来说,减少攻击面即指减少或消除攻击,可以从物联网设备制造商设计、建造并部署只含基础服务的固化设备时便开始着手。安全所有权不应只由物联网设备制造商或用户单独所有;而应与二者同样共享。
更新悖论
生产设施所面临的另一个挑战被称为“更新悖论”。很多工业生产网络很少更新升级,因为对制造商来说,停工升级花费巨大。对于某些连续加工设施来说,关闭和停工都将导致昂贵的生产原材料发生损失。
很多联网设备可能还将使用十年到二十年,这使得更新悖论愈加严重。认为设备无须应用任何软件补丁就能在整个生命周期安全运转的想法完全不切实际。20 对于生产和制造设施,在缩短停工时间的同时,使生产资产利用率达到最高至关重要。物联网设备制造商有责任生产更加安全的固化物联网设备,这些设备只能存在最小的攻击表面,并应利用默认的“开放”或不安全的安全配置规划最安全的设置。
制造设施中联网设备所面临的挑战通常也适用基于物联网的消费产品。智能系统更新换代很快,而且可能使消费型物品更容易遭受网络威胁。对于一件物品来说,威胁可能微不足道,但如果涉及大量的联网设备,影响将不可小觑——Mirai病毒攻击就是一个例子。在应对威胁的过程中,资产管理和技术战略将比以往任何时候都更重要。
人才缺口
2016年德勤与美国生产力和创新制造商联盟(MAPI)的研究表明,75%的受访高管认为他们缺少能够有效实施并维持安全联网生产生态圈的技能型人才资源。21随着攻击的复杂性和先进程度不断提升,将越来越难找到高技能的网络安全人才,来设计和实施具备安全性、警觉性和韧性的网络安全解决方案。
网络威胁不断变化,技术复杂性越来越高。搭载零日攻击的先进恶意软件能够自动找到易受攻击的设备,并在几乎无人为参与的情况下进行扩散,并可能击败已遭受攻击的信息技术/运营技术安全人员。这一趋势令人感到不安,物联网设备制造商需要生产更加安全的固化设备。
多管齐下,保护设备
在工业应用中,承担一些非常重要和敏感任务——包括控制发电与电力配送,水净化、化学品生产和提纯、制造以及自动装配生产线——的物联网设备通常最容易遭受网络攻击。由于生产设施不断减少人为干预,因此仅在网关或网络边界采取保护措施的做法已经没有用(图8)。
从设计流程开始考虑网络安全
制造商也许会觉得越来越有责任部署固化的、接近军用级别的联网设备。很多物联网设备制造商已经表示他们需要采用包含了规划和设计的安全编码方法,并在整个硬件和软件开发生命周期内采用领先的网络安全措施。22这个安全软件开发生命周期在整个开发过程中添加了安全网关(用于评估安全控制措施是否有效),采用领先的安全措施,并用安全的软件代码和软件库生产具备一定功能的安全设备。通过利用安全软件开发生命周期的安全措施,很多物联网产品安全评估所发现的漏洞能够在设计过程中得到解决。但如果可能的话,在传统开发生命周期结束时应用安全修补程序通常会更加费力费钱。
从联网设备端保护数据
物联网设备所产生的大量信息对工业4.0制造商非常重要。基于工业4.0的技术如高级分析和机器学习能够处理和分析这些信息,并根据计算分析结果实时或近乎实时地做出关键决策。这些敏感信息并不仅限于传感器与流程信息,还包括制造商的知识产权或者与隐私条例相关的数据。事实上,德勤与美国生产力和创新制造商联盟(MAPI)的调研发现,近70%的制造商使用联网产品传输个人信息,但近55%的制造商会对传输的信息加密。
生产固化设备需要采取可靠的安全措施,在整个数据生命周期间,敏感数据的安全同样也需要得到保护。因此,物联网设备制造商需要制定保护方案:不仅要安全地存放所有设备、本地以及云端存储的数据,还需要快速识别并报告任何可能危害这些数据安全的情况或活动。
保护云端数据存储和动态数据通常需要采用增强式加密、人工智能和机器学习解决方案,以形成强大的、响应迅速的威胁情报、入侵检测以及入侵防护解决方案。
随着越来越多的物联网设备实现联网,潜在威胁面以及受损设备所面临的风险都将增多。现在这些攻击面可能还不足以形成严重的漏洞,但仅数月或数年后就能轻易形成漏洞。因此,设备联网时必须使用补丁。确保设备安全的责任不应仅由消费者或联网设备部署方承担,而应由最适合实施最有效安全措施的设备制造商共同分担。
应用人工智能检测威胁
2016年8月,美国国防高级研究计划局举办了一场网络超级挑战赛,最终排名靠前的七支队伍在这场“全机器”的黑客竞赛中提交了各自的人工智能平台。网络超级挑战赛发起于2013年,旨在找到一种能够扫描网络、识别软件漏洞并在无人为干预的情况下应用补丁的、人工智能网络安全平台或技术。美国国防高级研究计划局希望借助人工智能平台大大缩短人类以实时或接近实时的方式识别漏洞、开发软件安全补丁所用的时间,从而减少网络攻击风险。
真正意义上警觉的威胁检测能力可能需要运用人工智能的力量进行大海捞针。在物联网设备产生海量数据的过程中,当前基于特征的威胁检测技术可能会因为重新收集数据流和实施状态封包检查而被迫达到极限。尽管这些基于特征的检测技术能够应对流量不断攀升,但其检测特征数据库活动的能力仍旧有限。
在工业4.0时代,结合减少攻击面、安全软件开发生命周期、数据保护、安全和固化设备的硬件与固件以及机器学习,并借助人工智能实时响应威胁,对以具备安全性、警惕性和韧性的方式开发设备至关重要。如果不能应对安全风险,如“震网”和Mirai恶意程序的漏洞攻击,也不能生产固化、安全的物联网设备,则可能导致一种不好的状况:关键基础设施和制造业将经常遭受严重攻击。
攻击不可避免时,保持韧性
恰当利用固化程度很高的目标设备的安全性和警惕性,能够有效震慑绝大部分攻击者。然而,值得注意的是,虽然企业可以减少网络攻击风险,但没有一家企业能够完全避免网络攻击。保持韧性的前提是,接受某一天企业将遭受网络攻击这一事实,而后谨慎行事。
韧性的培养过程包含三个阶段:准备、响应、恢复。
准备。企业应当准备好有效应对各方面事故,明确定义角色、职责与行为。审慎的准备如危机模拟、事故演练和战争演习,能够帮助企业了解差异,并在真实事故发生时采取有效的补救措施。
响应。应仔细规划并对全公司有效告知管理层的响应措施。实施效果不佳的响应方案将扩大事件的影响、延长停产时间、减少收入并损害企业声誉。这些影响所持续的时间将远远长于事故实际持续的时间。
恢复。企业应当认真规划并实施恢复正常运营和限制企业遭受影响所需的措施。应将从事后分析中汲取到的教训用于制定之后的事件响应计划。具备韧性的企业应在迅速恢复运营和安全的同时将事故影响降至最低。在准备应对攻击,了解遭受攻击时的应对之策并快速消除攻击的影响时,企业应全力应对、仔细规划、充分执行。
推动网络公司发展至今日的比特(0和1)让制造业的整个价值链经历了从供应网络到智能工厂再到联网物品的巨大转变。随着联网技术应用的不断普及,网络风险可能增加并发生改变,也有可能在价值链的不同阶段和每一家企业有不同的表现。每家企业应以最能满足其需求的方式适应工业生态圈。
企业不能只用一种简单的解决方法或产品或补丁解决工业4.0所带来的网络风险和威胁。如今,联网技术为关键商业流程提供支持,但随着这些流程的关联性提高,可能会更容易出现漏洞。因此,企业需要重新思考其业务连续性、灾难恢复力和响应计划,以适应愈加复杂和普遍的网络环境。
法规和行业标准常常是被动的,“合规”通常表示最低安全要求。企业面临着一个特别的挑战——当前所采用的技术并不能完全保证安全,因为干扰者只需找出一个最薄弱的点便能成功入侵企业系统。这项挑战可能还会升级:不断提高的互联性和收集处理实时分析将引入大量需要保护的联网设备和数据。
企业需要采用具备安全性、警惕性和韧性的方法,了解风险,消除威胁:
安全性。采取审慎的、基于风险的方法,明确什么是安全的信息以及如何确保信息安全。贵公司的知识产权是否安全?贵公司的供应链或工业控制系统环境是否容易遭到攻击?
警惕性。持续监控系统、网络、设备、人员和环境,发现可能存在的威胁。需要利用实时威胁情报和人工智能,了解危险行为,并快速识别引进的大量联网设备所带来的威胁。
韧性。随时都可能发生事故。贵公司将会如何应对?多久能恢复正常运营?贵公司将如何快速消除事故影响?
由于企业越来越重视工业4.0所带来的商业价值,企业将比以往任何时候更需要提出具备安全性、警惕性和韧性的网络风险解决方案。
报告出品方:德勤中国
获取本报告pdf版请登录【远瞻智库官网】或点击链接:“链接”
Ⅹ 机器学习与人工智能将应用于哪些安全领域
机器学习正在不断加的加快前进的步伐,是时候来探讨这个问题了。人工智能真的能在未来对抗网络攻击,自主地保护我们的系统吗?
如今,越来越多的网络攻击者通过自动化技术发起网络攻击,而受到攻击的企业或组织却仍在使用人力来汇总内部安全发现,再结合外部威胁信息进行对比。利用这种传统的方式部署的入侵检测系统往往需要花费数周,甚至几个月的时间,然而就在安全人员修复的这段时间内,攻击者依然能够利用漏洞侵入系统,肆意掠夺数据。为了应对这些挑战,一些先行者开始利用人工智能来完成日常的网络风险管理操作。
根据Verizon Data Breach的报告,超过70%的攻击是通过发现补丁利用已知漏洞完成的。同时,调查结果表明,一个黑客可以在漏洞公布出来的几分钟内利用该漏洞尝试入侵。修复速度的重要性可见一斑。然而,由于安全专业人员的短缺再加上大数据集需要在安全的状态下处理,因此漏洞补救措施无法跟上网络攻击者并不奇怪。
近期,工业调查表明组织机构平均需要146天的时间才能修复致命漏洞。这些发现无疑给我们敲响了警钟,重新思考现有的企业安全势在必行。
攻击者长期利用机器和自动化技术来简化操作。那我们又未尝不可?
2016年,业界开始将人工智能和机器学习视为圣杯,提高了组织机构的检测和响应能力。 利用反复学习数据的方式得到的算法,来保证发现威胁,而这个过程不需要操作者考虑“要找什么东西”的问题。最终,人工智能能够在三个特定事件中帮助人类自动化解决问题。
大数据识别威胁
当出现网络安全这一概念的时候,所有的组织机构就面临了一个难题。
在过去,关注网络和终端的保护就可以了,而如今应用程序,云服务和移动设备(例如平板电脑,手机,蓝牙设备和智能手表)的加入,使得组织机构的发展这些项目的同时,必须针对它们做好足够的防御。然而需要防御的攻击面在不断扩大,在将来会变得更大。
这种“更广泛和更深层”的攻击面只会增加如何管理组织中无数IT和安全工具生成的数据的数量,速度和复杂性等现有问题。分析、归一化、优先处理被攻破的系统显得尤为重要。工具越多,挑战的难度越大;攻击面越广,要做的数据分析也就越多。 传统上,手工修复需要大量的工作人员梳理大量的数据连接点和发现潜在的威胁。在安全人员在努力修复几个月时间内,攻击者就能利用漏洞提取数据。
突破现有的思维方式、自动化执行传统的安全操作已成为补充稀缺的网络安全运营人才的头等大事。 就是在这种大环境下,使用人机交互式机器学习引擎可以达到自动化跨不同数据类型的数据聚合、 搜集评估数据到合规要求、规范化信息以排除误报,重复报告以及大量的数据属性的效果。
更具关联性的风险评估
一旦发现内部安全情报与外部威胁数据(例如,漏洞利用,恶意软件,威胁行为者,声誉智能)相匹配,那么首先要确定的就是这些发现是否与关键业务相关联,否则无法确定真正存在的风险及其对业务的最终影响。 打个比方,假设在某次机器的处理过程中,由于机器不知道“coffee服务器”相比“email务器”对业务的影响,最终导致了补救措施无法集中在真正需要补救的事件中。在这个例子中,人机交互的机器学习和高级算法起了适得其反的效果,这不是我们愿意看到的现象。
自学习的应急响应
增加负责确定安全漏洞的安全团队和专注于补救这些团队的IT运营团队之间的协作仍然是许多组织面临的挑战。 使用基于风险的网络安全概念作为蓝图,可以实施主动安全事件通知和人机交互环路干预的自动化过程。 通过建立阈值和预定义的规则,企业、机构还可以通过编制补救措施来的方式及时修复安全漏洞。
虽然机器学习可以帮助减少修复时间,但它是否能够自主地保护组织免受网络攻击?
很多时候,无人监督的机器学习会因为疲于警报以及注意力的原因降导致误报和警报频发。 对于攻击者来说,这个结果无疑给他们带来了破坏机器学习的新思路。 但是不得不承认的是,如今已经达到了一个临界点,人类已经无法继续处理大量的安全数据。 这才引出了所谓的人机交互式机器学习。
人机交互式机器学习系统分析内部安全智能,并将其与外部威胁数据相关联,帮助人类在海量的数据中发现威胁数据。 然后人类通过标记最相关的威胁向系统提供反馈。 随着时间的推移,系统会根据人类输入调整其监测和分析,优化发现真实网络威胁和最小化误报的可能性。
让机器学习在一线安全数据评估中取得重大进展,使分析人员能够专注于对威胁进行更高级的调查,而不是执行战术性的数据处理。