1. 知识普及-安全态势
随着网络规模和复杂性不断增大,网络的攻击技术不断革新,新型攻击工具大量涌现,传统的网络安全技术显得力不从心,网络入侵不可避免,网络安全问题越发严峻。
单凭一种或几种安全技术很难应对复杂的安全问题,网络安全人员的关注点也从单个安全问题的解决,发展到研究整个网络的安全状态及其变化趋势。
网络安全态势感知对影响网络安全的诸多要素进行获取、理解、评估以及预测未来的发展趋势,是对网络安全性定量分析的一种手段,是对网络安全性的精细度量,态势感知成已经为网络安全2.0时代安全技术的焦点,对保障网络安全起着非常重要的作用。
一、态势感知基本概念
1.1 态势感知通用定义
随着网络安全态势感知研究领域的不同,人们对于态势感知的定义和理解也有很大的不同,其中认同度较高的是Endsley博士所给出的动态环境中态势感知的通用定义:
态势感知是感知大量的时间和空间中的环境要素,理解它们的意义,并预测它们在不久将来的状态。
在这个定义中,我们可以提炼出态势感知的三个要素:感知、理解和预测,也就是说态势感知可以分成感知、理解和预测三个层次的信息处理,即:
感知:感知和获取环境中的重要线索或元素;
理解:整合感知到的数据和信息,分析其相关性;
预测:基于对环境信息的感知和理解,预测相关知识的未来的发展趋势。
1.2 网络安全态势感知概念
目前,对网络安全态势感知并未有一个统一而全面的定义,我们可以结合态势感知通用定义来对对网络安全态势感知给出一个基本描述,即:
网络安全态势感知是综合分析网络安全要素,评估网络安全状况,预测其发展趋势,并以可视化的方式展现给用户,并给出相应的报表和应对措施。
根据上述概念模型,网络安全态势感知过程可以分为一下四个过程:
1)数据采集:通过各种检测工具,对各种影响系统安全性的要素进行检测采集获取,这一步是态势感知的前提;
2)态势理解:对各种网络安全要素数据进行分类、归并、关联分析等手段进行处理融合,对融合的信息进行综合分析,得出影响网络的整体安全状况,这一步是态势感知基础;
3)态势评估:定性、定量分析网络当前的安全状态和薄弱环节,并给出相应的应对措施,这一步是态势感知的核心;
4)态势预测:通过对态势评估输出的数据,预测网络安全状况的发展趋势,这一步是态势感知的目标。
网络安全态势感知要做到深度和广度兼备,从多层次、多角度、多粒度分析系统的安全性并提供应对措施,以图、表和安全报表的形式展现给用户。
二、态势感知常用分析模型
在网络安全态势感知的分析过程中,会应用到很多成熟的分析模型,这些模型的分析方法虽各不相同,但多数都包含了感知、理解和预测的三个要素。
2.1 始于感知:Endsley模型
Endsley模型中,态势感知始于感知。
感知包含对网络环境中重要组成要素的状态、属性及动态等信息,以及将其归类整理的过程。
理解则是对这些重要组成要素的信息的融合与解读,不仅是对单个分析对象的判断分析,还包括对多个关联对象的整合梳理。同时,理解是随着态势的变化而不断更新演变的,不断将新的信息融合进来形成新的理解。
在了解态势要素的状态和变化的基础上,对态势中各要素即将呈现的状态和变化进行预测。
2.2 循环对抗:OODA模型
OODA是指观察(Oberve)、调整(Orient)、决策(Decide)以及行动(Act),它是信息战领域的一个概念。OODA是一个不断收集信息、评估决策和采取行动的过程。
将OODA循环应用在网络安全态势感知中,攻击者与分析者都面临这样的循环过程:在观察中感知攻击与被攻击,在理解中调整并决策攻击与防御方法,预测对手下一个动作并发起行动,同时进入下一轮的观察。
如果分析者的OODA循环比攻击者快,那么分析者有可能“进入”对方的循环中,从而占据优势。例如通过关注对方正在进行或者可能进行的事情,即分析对手的OODA环,来判断对手下一步将采取的动作,而先于对方采取行动。
2.3 数据融合:JDL模型
JDL(Joint Directors of Laboratories)模型是信息融合系统中的一种信息处理方式,由美国国防部成立的数据融合联合指挥实验室提出。
JDL模型将来自不同数据源的数据和信息进行综合分析,根据它们之间的相互关系,进行目标识别、身份估计、态势评估和威胁评估,融合过程会通过不断的精炼评估结果来提高评估的准确性。
在网络安全态势感知中,面对来自内外部大量的安全数据,通过JDL模型进行数据的融合分析,能够实现对分析目标的感知、理解与影响评估,为后续的预测提供重要的分析基础和支撑。
2.4 假设与推理:RPD模型
RPD(Recognition Primed Decision)模型中定义态势感知分为两个阶段:感知和评估。
感知阶段通过特征匹配的方式,将现有态势与过去态势进行对比,选取相似度高的过去态势,找出当时采取的哪些行动方案是有效的。评估阶段分析过去相似态势有效的行动方案,推测当前态势可能的演化过程,并调整行动方案。
以上方式若遇到匹配结果不理想的情况,则采取构造故事的方式,即根据经验探索潜在的假设,再评估每个假设与实际发生情况的相符度。在RPD模型中对感知、理解和预测三要素的主要体现为:基于假设进行相关信息的收集(感知),特征匹配和故事构造(理解),假设驱动思维模拟与推测(预测)。
三、态势感知应用关键点
当前,单维度的网络安全防御技术手段,已经难以应对复杂的网络环境和大量存在的安全问题,对网络安全态势感知具体模型和技术的研究,已经成为2.0时代网络安全技术的焦点,同时很多机构也已经推出了网络安全态势感知产品和解决方案。
但是,目前市场上的的相关产品和解决方案,都相对偏重于网络安全态势的某一个或某几个方面的感知,网络安全态势感知的数据分析的深度和广度还需要进一步加强,同时网络安全态势感知与其它系统平台的联动不足,无法将态势感知与安全运营深入融合。
为此,太极信安认为网络安全态势感知平台的建设,应着重考虑以下几个方面的内容:
1、在数据采集方面,网络安全数据来源要尽可能的丰富,应该包括网络结构数据、网络服务数据、漏洞数据、脆弱性数据、威胁与入侵数据、用户异常行为数据等等,只有这样态势评估结果才能准确。
2、在态势评估方面,态势感评估要对多个层次、多个角度进行评估,能够评估网络的业务安全、数据安全、基础设施安全和整体安全状况,并且应该针对不同的应用背景和不同的网络规模选择不同的评估方法。
3、在态势感知流程方面,态势感知流程要规范,所采用的算法要简单,应该选择规范化的、易操作的评估模型和预测模型,能够做到实时准确的评估网络安全态势。
4、在态势预测方面,态势感知要能支持对不同的评估结果预测其发展趋势,预防大规模安全事件的发生。
5、在态势感知结果显示方面,态势感知能支持多种形式的可视化显示,支持与用户的交互,能根据不同的应用需求生成态势评测报表,并提供相应的改进措施。
四、总结
上述几种模型和应用关键点对网络安全态势感知来讲至关重要,将这些基本概念和关键点进行深入理解并付诸于实践,才能真正帮助决策者获得网络安全态势感知能力。
太极信安认为,建设网络安全态势感知平台,应以“业务+数据定义安全”战略为核心驱动,基于更广、更深的数据来源分析,以用户实际需求为出发点,从综合安全、业务安全、数据安全、信息基础设施安全等多个维度为用户提供全面的安全态势感知,在认知、理解、预测的基础上,真正帮助用户实现看见业务、看懂威胁、看透风险、辅助决策。
摘自 CSDN 道法一自然
2. 移动云态势感知是什么有啥优势
态势感知是一种利用大数据架构,通过采集系统的网络安全数据信息,对所有安全数据进行统一处理分析,发现和告警网络攻击行为、安全威胁事件、日志、流量等网络安全问题的软件,它的优势在于可以主动监测各项态势,防护很精准,可以直观智能分析态势,对维护系统安全有很大的帮助。
3. 网络传销监测治理基地中的“网络安全态势感知系统”是怎么来的
现在网络安全存在着很多隐患,腾讯作为连接中国近10亿互联网用户的公司,将净化网络环境、打击各类网络违法犯罪当作自身的社会责任,联合反电信网络诈骗各方产业发布“守护者计划”,同时成立全国首个反诈骗实验室,并开发了“网络安全态势感知系统”。
4. 态势感知探针是什么
态势感知探针大规模系统环境中,对能够引起系统状态发生变化的安全要素进行获取、理解、显示以及预测未来的发展趋势。
态势感知探针的作用:
联合作战、网络中心战的提出,推动了态势感知的产生和不断发展,作为实现态势感知的重要平台和物质基础,态势图对数据和信息复杂的需求和特性构成了突出的大数据问题。
最后对关键数据和信息处理技术进行了研究.该研究对于“大数据”在军事信息处理和数据化决策等领域的研究具有重要探索价值。
随着计算机和通信技术的迅速发展, 计算机网络的应用越来越广泛, 其规模越来越庞大, 多层面的网络安全威胁和安全风险也在不断增加, 网络病毒、 Dos/DDos攻击等构成的威胁和损失越来越大, 网络攻击行为向着分布化、 规模化、 复杂化等趋势发展。
网络安全态势感知技术能够综合各方面的安全因素, 从整体上动态反映网络安全状况, 并对网络安全的发展趋势进行预测和预警。 大数据技术特有的海量存储、 并行计算、 高效查询等特点。
为大规模网络安全态势感知技术的突破创造了机遇, 借助大数据分析, 对成千上万的网络日志等信息进行自动分析处理与深度挖掘, 对网络的安全状态进行分析评价, 感知网络中的异常事件与整体安全态势。
5. 网络可视化什么意思
网络安全可视化是指在网络安全领域中的呈现技术,将网络安全加固、检测、防御、响应等过程中的数据和结果转换成图形界面,通过C/S或B/S方式呈现在屏幕或其它介质上,并通过人机交互的方式进行搜索、加工、汇总等操作的理论、方法和技术。
网络安全可视化是数据可视化研究中较为广泛的一个方向,利用人类视觉对模型和结构的获取能力,将抽象的网络和系统数据以图形图像的方式展现出来,协助分析网络状况,识别网络异常或入侵行为,预测网络安全事件的发展趋势。
网络态势可视化技术作为一项新技术,是网络安全态势感知与可视化技术的结合,将网络中蕴涵的态势状况通过可视化图形方式展示给用户,并借助于人在图形图像方面强大的处理能力,实现对网络异常行为的分析和检测。
6. 人工智能在网络安全领域的应用有哪些
近年来,在网络安全防御中出现了多智能体系统、神经网络、专家系统、机器学习等人工智能技术。一般来说,AI主要应用于网络安全入侵检测、恶意软件检测、态势分析等领域。
1、人工智能在网络安全领域的应用——在网络入侵检测中。
入侵检测技术利用各种手段收集、过滤、处理网络异常流量等数据,并为用户自动生成安全报告,如DDoS检测、僵尸网络检测等。目前,神经网络、分布式代理系统和专家系统都是重要的人工智能入侵检测技术。2016年4月,麻省理工学院计算机科学与人工智能实验室(CSAIL)与人工智能初创企业PatternEx联合开发了基于人工智能的网络安全平台AI2。通过分析挖掘360亿条安全相关数据,AI2能够准确预测、检测和防范85%的网络攻击。其他专注于该领域的初创企业包括Vectra Networks、DarkTrace、Exabeam、CyberX和BluVector。
2、人工智能在网络安全领域的应用——预测恶意软件防御。
预测恶意软件防御使用机器学习和统计模型来发现恶意软件家族的特征,预测进化方向,并提前防御。目前,随着恶意病毒的增多和勒索软件的突然出现,企业对恶意软件的保护需求日益迫切,市场上出现了大量应用人工智能技术的产品和系统。2016年9月,安全公司SparkCognition推出了DeepArmor,这是一款由人工智能驱动的“Cognition”杀毒系统,可以准确地检测和删除恶意文件,保护网络免受未知的网络安全威胁。在2017年2月举行的RSA2017大会上,国内外专家就人工智能在下一代防病毒领域的应用进行了热烈讨论。预测恶意软件防御的公司包括SparkCognition、Cylance、Deep Instinct和Invincea。
3、人工智能在网络安全领域的应用——在动态感知网络安全方面。
网络安全态势感知技术利用数据融合、数据挖掘、智能分析和可视化技术,直观地显示和预测网络安全态势,为网络安全预警和防护提供保障,在不断自我学习的过程中提高系统的防御水平。美国公司Invincea开发了基于人工智能的旗舰产品X,以检测未知的威胁,而英国公司Darktrace开发了一种企业安全免疫系统。国内伟达安防展示了自主研发的“智能动态防御”技术,以及“人工智能”与“动态防御”六大“魔法”系列产品的整合。其他参与此类研究的初创企业包括LogRhythm、SecBI、Avata Intelligence等。
此外,人工智能应用场景被广泛应用于网络安全运行管理、网络系统安全风险自评估、物联网安全问题等方面。一些公司正在使用人工智能技术来应对物联网安全挑战,包括CyberX、network security、PFP、Dojo-Labs等。
以上就是《人工智能在网络安全领域的应用是什么?这个领域才是最关键的》,近年来,在网络安全防御中出现了多智能体系统、神经网络、专家系统、机器学习等人工智能技术,如果你想知道更多的人工智能安全的发展,可以点击本站其他文章进行学习。
7. 什么是网络安全态势感知
在大规模网络环境中,对能够引起网络态势发生变化的安全要素进行获取、理解、显示并据此预测未来的网络安全发展趋势。简而言之就是根据网络安全数据,预测未来网络安全的趋势。
8. 现在的网络安全问题很多,态势感知可以保障网络安全吗
态势感知可以对保障网络安全起到很好的监测并提早预防的作用,都是仅凭态势感知还远远不够,还需要很多网络安全技术和管理措施,如密码加密技术、身份认证、访问控制等
9. 维护网络安全,什么是最基本最基础的工作
感知网络安全态势。
在大规模网络环境中,对能够引起网络态势发生变化的安全要素进行获取、理解、显示并据此预测未来的网络安全发展趋势。
态势感知为一种基于环境的、动态、整体地洞悉安全风险的能力,以安全大数据为基础,从全局视角提升对安全威胁的发现识别、理解分析、响应处置能力的一种方式,最终是为了决策与行动,是安全能力的落地。
(9)网络安全态势感知与分析扩展阅读
态势感知建设目的
检测:提供网络安全持续监控能力,及时发现各种攻击威胁与异常,特别是针对性攻击。
分析、响应:建立威胁可视化及分析能力,对威胁的影响范围、攻击路径、目的、手段进行快速研判,目的是有效的安全决策和响应。
预测、预防:建立风险通报和威胁预警机制,全面掌握攻击者目的、技战术、攻击工具等信息。
防御:利用掌握的攻击者相关目的、技战术、攻击工具等情报,完善防御体系。