导航:首页 > 网络设置 > 全卷积神经网络权重共享

全卷积神经网络权重共享

发布时间:2023-01-13 15:13:00

⑴ 卷积神经网络算法是什么

一维构筑、二维构筑、全卷积构筑。

卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。

卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称为“平移不变人工神经网络(Shift-Invariant Artificial Neural Networks, SIANN)”。

卷积神经网络的连接性:

卷积神经网络中卷积层间的连接被称为稀疏连接(sparse connection),即相比于前馈神经网络中的全连接,卷积层中的神经元仅与其相邻层的部分,而非全部神经元相连。具体地,卷积神经网络第l层特征图中的任意一个像素(神经元)都仅是l-1层中卷积核所定义的感受野内的像素的线性组合。

卷积神经网络的稀疏连接具有正则化的效果,提高了网络结构的稳定性和泛化能力,避免过度拟合,同时,稀疏连接减少了权重参数的总量,有利于神经网络的快速学习,和在计算时减少内存开销。

卷积神经网络中特征图同一通道内的所有像素共享一组卷积核权重系数,该性质被称为权重共享(weight sharing)。权重共享将卷积神经网络和其它包含局部连接结构的神经网络相区分,后者虽然使用了稀疏连接,但不同连接的权重是不同的。权重共享和稀疏连接一样,减少了卷积神经网络的参数总量,并具有正则化的效果。

在全连接网络视角下,卷积神经网络的稀疏连接和权重共享可以被视为两个无限强的先验(pirior),即一个隐含层神经元在其感受野之外的所有权重系数恒为0(但感受野可以在空间移动);且在一个通道内,所有神经元的权重系数相同。

⑵ 如何理解卷积神经网络中的权值共享

权值共享的通俗理解就是整张图片或者整组feature map共用一个卷积核,卷积核在图片上慢慢滑动,所以图片上每个区域都是利用了卷积核内的参数,这就是权值共享。

⑶ 卷积神经网络

一般由卷积层,汇聚层,和全连接层交叉堆叠而成,使用反向传播算法进行训练(反向传播,再重新看一下)
卷积神经网络有三个结构上的特性:局部连接,权重共享以及子采样

滤波器filter 卷积核convolution kernel
局部连接,其实就是根据时间,权重递减 最后为0 参数就传播不到远处了

局部连接 乘以 滤波器 得特征映射

互相关,是一个衡量两个序列相关性的函数,
互相关和卷积的区别在于 卷积核仅仅是否进行翻转,因此互相关也可以称为 不翻转卷积
使用卷积 是为了进行特征抽取,卷积核 是否进行翻转和其特征抽取的能力无关。
当卷积核是可以学习的参数,卷积和互相关是等价的,因此,其实两者差不多。

Tips:P是代表特征映射

⑷ 人工智能CNN卷积神经网络如何共享权值

首先权值共享就是滤波器共享,滤波器的参数是固定的,即是用相同的滤波器去扫一遍图像,提取一次特征特征,得到feature map。在卷积网络中,学好了一个滤波器,就相当于掌握了一种特征,这个滤波器在图像中滑动,进行特征提取,然后所有进行这样操作的区域都会被采集到这种特征,就好比上面的水平线。

⑸ 如何理解卷积神经网络中的权值共享

所谓的权值共享就是说,给一张输入图片,用一个filter去扫这张图,filter里面的数就叫权重,这张图每个位置是被同样的filter扫的,所以权重是一样的,也就是共享。 这么说可能还不太明白,如果你能理解什么叫全连接神经网络的话,那么从一个尽量减少参数个数的角度去理解就可以了。 对于一张输入图片,大小为W*H,如果使用全连接网络,生成一张X*Y的feature map,需要W*H*X*Y个参数,如果原图长宽是10^2级别的,而且XY大小和WH差不多的话,那么这样一层网络需要的参数个数是10^8~10^12级别。 这么多参数肯定是不行的,那么我们就想办法减少参数的个数对于输出层feature map上的每一个像素,他与原图片的每一个像素都有连接,每一个链接都需要一个参数。但注意到图像一般都是局部相关的,那么如果输出层的每一个像素只和输入层图片的一个局部相连,那么需要参数的个数就会大大减少。假设输出层每个像素只与输入图片上F*F的一个小方块有连接,也就是说输出层的这个像素值,只是通过原图的这个F*F的小方形中的像素值计算而来,那么对于输出层的每个像素,需要的参数个数就从原来的W*H减小到了F*F。如果对于原图片的每一个F*F的方框都需要计算这样一个输出值,那么需要的参数只是W*H*F*F,如果原图长宽是10^2级别,而F在10以内的话,那么需要的参数的个数只有10^5~10^6级别,相比于原来的10^8~10^12小了很多很多。

⑹ 如何理解人工智能神经网络中的权值共享问题

权值(权重)共享这个词是由LeNet5模型提出来的。以CNN为例,在对一张图偏进行卷积的过程中,使用的是同一个卷积核的参数。比如一个3×3×1的卷积核,这个卷积核内9个的参数被整张图共享,而不会因为图像内位置的不同而改变卷积核内的权系数。说的再直白一些,就是用一个卷积核不改变其内权系数的情况下卷积处理整张图片(当然CNN中每一层不会只有一个卷积核的,这样说只是为了方便解释而已)。

⑺ CNN基本算子与操作

卷积神经网络 (Convolutional Neural Networks,CNN)是一种前馈神经网络。卷积神经网络是受生物学上感受野(Receptive Field)的机制而提出的。感受野主要是指听觉系统、本体感觉系统和视觉系统中神经元的一些性质。比如在视觉神经系统中,一个神经元的感受野是指视网膜上的特定区域,只有这个区域内的刺激才能够激活该神经元。

卷积神经网络有三个结构上的特性: 局部连接 , 权重共享 以及空间或时间上的 次采样 。详细介绍请见 卷积神经网络

1、卷积层  详情参考 卷积层(Convolution Layer)

2、全连接层 详情参考 全连接层 (Connected Layer)  作用:降维

3、Softmax Layer 详情参考  Softmax Layer

4、 CNN池化

      最大值池化 详情参考 最大池化层(Maxpool Layer)

      平局值池化 详情参考 平均值池化

      Golbal Average Pooling 详情参考 Golbal Average Pooling

      Spatial Pyramid Pooling 详情参考 Spatial Pyramid Pooling

5、dropout layer:目的是为了防止CNN 过拟合,主要用于训练过程,推理过程不需要 详情参考 Dropout Layer

6、 激活函数  :线性激活函数与非线性激活函数

     非线性激活函数,可以使神经网络随意逼近复杂函数:Sigmoid、Tanh、ReLU

      Sigmoid:详情参考 Sigmoid

      ReLU:详情参考 ReLU

      Tanh:详情参考 Tanh

7、 loss函数

8、 梯度下降

⑻ 卷积神经网络权值共享怎么体现的


局部连接的概念参考局部感受域,即某个视神经元仅考虑某一个小区域的视觉输入,因此相比普通神经网络的全连接层(下一层的某一个神经元需要与前一层的所有节点连接),卷积网络的某一个卷积层的所有节点只负责前层输入的某一个区域(比如某个3*3的方块)。这样一来需要训练的权值数相比全连接而言会大大减少,进而减小对样本空间大小的需求。
权值共享的概念就是,某一隐藏层的所有神经元共用一组权值。
这两个概念对应卷积层的话,恰好就是某个固定的卷积核。卷积核在图像上滑动时每处在一个位置分别对应一个“局部连接”的神经元,同时因为“权值共享”的缘故,这些神经元的参数一致,正好对应同一个卷积核。
顺便补充下,不同卷积核对应不同的特征,比如不同方向的边(edge)就会分别对应不同的卷积核。

综述


总体来说就是重复卷积-relu来提取特征,进行池化之后再作更深层的特征提取,实质上深层卷积网络的主要作用在于特征提取。最后一层直接用softmax来分类(获得一个介于0~1的值表达输入属于这一类别的概率)。

⑼ 卷积神经网络卷积层算完数据超阈怎么办

、计算方法不同1、前馈神经网络:一种最简单的神经网络,各神经元分层排列AI爱发猫 www.aifamao.com。每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层.各层间没有反馈。

2、BP神经网络:是一种按照误差逆向传播算法训练的多层前馈神经网络。3、卷积神经网络:包含卷积计算且具有深度结构的前馈神经网络。

二、用途不同1、前馈神经网络:主要应用包括感知器网络、BP网络和RBF网络。

2、BP神经网络:(1)函数逼近:用输入向量和相应的输出向量训练一个网络逼近一个函数;(2)模式识别:用一个待定的输出向量将它与输入向量联系起来;(3)分类:把输入向量所定义的合适方式进行分类;(4)数据压缩:减少输出向量维数以便于传输或存储。

3、卷积神经网络:可应用于图像识别、物体识别等计算机视觉、自然语言处理、物理学和遥感科学等领域。联系:BP神经网络和卷积神经网络都属于前馈神经网络,三者都属于人工神经网络。因此,三者原理和结构相同。

三、作用不同1、前馈神经网络:结构简单,应用广泛,能够以任意精度逼近任意连续函数及平方可积函数.而且可以精确实现任意有限训练样本集。2、BP神经网络:具有很强的非线性映射能力和柔性的网络结构。

网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。3、卷积神经网络:具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类。

(9)全卷积神经网络权重共享扩展阅读:1、BP神经网络优劣势BP神经网络无论在网络理论还是在性能方面已比较成熟。其突出优点就是具有很强的非线性映射能力和柔性的网络结构。

网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。但是BP神经网络也存在以下的一些主要缺陷。

①学习速度慢,即使是一个简单的问题,一般也需要几百次甚至上千次的学习才能收敛。②容易陷入局部极小值。③网络层数、神经元个数的选择没有相应的理论指导。④网络推广能力有限。

2、人工神经网络的特点和优越性,主要表现在以下三个方面①具有自学习功能。

例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。

预期未来的人工神经网络计算机将为人类提供经济预测、效益预测,其应用前途是很远大的。②具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。③具有高速寻找优化解的能力。

寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。

参考资料:网络—前馈神经网络网络—BP神经网络网络—卷积神经网络网络—人工神经网络。

卷积神经网络处理规格不同的图片
用卷积神经网络处理 “图” 结构数据应该怎么办


卷积神经网络有以下几种应用可供研究:1、基于卷积网络的形状识别物体的形状是人的视觉系统分析和识别物体的基础,几何形状是物体的本质特征的表现,并具有平移、缩放和旋转不变等特点,所以在模式识别领域,对于形状的分析和识别具有十分重要的意义,而二维图像作为三维图像的特例以及组成部分,因此二维图像的识别是三维图像识别的基础。

2、基于卷积网络的人脸检测卷积神经网络与传统的人脸检测方法不同,它是通过直接作用于输入样本,用样本来训练网络并最终实现检测任务的。

它是非参数型的人脸检测方法,可以省去传统方法中建模、参数估计以及参数检验、重建模型等的一系列复杂过程。本文针对图像中任意大小、位置、姿势、方向、肤色、面部表情和光照条件的人脸。

3、文字识别系统在经典的模式识别中,一般是事先提取特征。提取诸多特征后,要对这些特征进行相关性分析,找到最能代表字符的特征,去掉对分类无关和自相关的特征。

然而,这些特征的提取太过依赖人的经验和主观意识,提取到的特征的不同对分类性能影响很大,甚至提取的特征的顺序也会影响最后的分类性能。同时,图像预处理的好坏也会影响到提取的特征。

卷积神经网络为什么最后接一个全连接层
在常见的卷积神经网络的最后往往会出现一两层全连接层,全连接一般会把卷积输出的二维特征图(featuremap)转化成(N*1)一维的一个向量全连接的目的是什么呢?

因为传统的端到到的卷积神经网络的输出都是分类(一般都是一个概率值),也就是几个类别的概率甚至就是一个数--类别号,那么全连接层就是高度提纯的特征了,方便交给最后的分类器或者回归。

但是全连接的参数实在是太多了,你想这张图里就有20*12*12*100个参数,前面随便一层卷积,假设卷积核是7*7的,厚度是64,那也才7*7*64,所以现在的趋势是尽量避免全连接,目前主流的一个方法是全局平均值。

也就是最后那一层的featuremap(最后一层卷积的输出结果),直接求平均值。有多少种分类就训练多少层,这十个数字就是对应的概率或者叫置信度。

卷积神经网络是如何反向调整参数的?
卷积神经网络的模型问题? 50


怎么又是你.....网络自然是搭建起来的啊,比如CNN,一层一层地建,如果你是用别人已经建好的网络,比如最简单的LeNet-5,那么Tensorflow中会直接提供你一个Net;但是如果你是自定义网络类型,那么需要继承nn.Noles,然后重新定义网络结构,封装成一个Net,总结起来,模型是很多数学公式搭在一起,然鹅,数学公式是封装好的,可以相互交流哈。

 

打开CSDN,阅读体验更佳

卷积神经网络的缺点是什么?_薯仔西瓜大芝麻的博客_卷积神经...
平移不变性 当我们说平移不变性时,我们意思是,稍微改变同一物体的朝向或位置,可能并不会激活那些识别该物体的神经元。 正如上图所示,假如一个神经元是用来识别一只猫的,其参数会随着猫的位置和转动的变化而变化。虽然数据扩增(data aug...
卷积神经网络存在的问题,卷积神经网络的卷积层_普通网友的博客-CSDN博 ...
对于无法完美解决的梯度消失问题,一个可能部分解决梯度消失问题的办法是使用ReLU(RectifiedLinearUnit)激活函数,ReLU在卷积神经网络CNN中得到了广泛的应用,在CNN中梯度消失似乎不再是问题。 那么它是什么样子呢?其实很简单,比我们前面提到的...
最新发布 影响深度卷积神经网络算法的关键参数是网络结构
局部连接的概念参考局部感受域,即某个视神经元仅考虑某一个小区域的视觉输入,因此相比普通神经网络的全连接层(下一层的某一个神经元需要与前一层的所有节点连接),卷积网络的某一个卷积层的所有节点只负责前层输入的某一个区域(比如某个3*3的方块)。卷积神经网络的连接性:卷积神经网络中卷积层间的连接被称为稀疏连接(sparse connection),即相比于前馈神经网络中的全连接,卷积层中的神经元仅与其相邻层的部分,而非全部神经元相连。权重共享和稀疏连接一样,减少了卷积神经网络的参数总量,并具有正则化的效果。
继续访问
卷积神经网络难点梳理
目录1 基本概念及原理1.1 基本概念1.2 基本原理2 卷积是怎么“卷”的2.1 数学中的卷积2.2 CNN中的卷积3 损失函数是怎样当好指挥官的4 梯度下降、反向传播和显卡参考内容 1 基本概念及原理 1.1 基本概念 概念名称 目的 操作 示意图 卷积(Convolution) 提取特征 将图像矩阵遍历乘以卷积核矩阵并输出 池化(Pooling) 降低数据量 对小块矩阵中的所有数取平均(平均池化)或者取最大(最大池化)并只输出一个值,再遍历 激活(Activation) 对
继续访问

卷积神经网络的缺点_辽宁大学的博客_卷积神经网络的优缺点
1.做卷积神经网络需要将数据集归一化。不同的尺寸混合在一起难以训练。2.卷积神经网络没有记忆功能。3.对图像处理很友善,对视频语音自然语言处理能力差...
关于CNN卷积神经网络的问题_麦格芬230的博客
将卷积神经网络CNN应用到文本分类任务,利用多个不同大小的卷积核来提取句子中的关键信息(类似于多窗口大小的N-gram),从而能够更好地捕捉局部相关性。 4.在情感分析任务中,TextCNN的卷积核,卷积的是哪些向量呢?卷积卷的是这些向量的什么...
深入浅出——搞懂卷积神经网络的过拟合、梯度弥散、batchsize的影响的问题(二)
过拟合 梯度弥散 batchsize 不平衡数据集
继续访问
cnn卷积神经网络反向传播,卷积神经网络维度变化
深度学习框架,尤其是基于人工神经网络的框架可以追溯到1980年福岛邦彦提出的新认知机[2],而人工神经网络的历史更为久远。1989年,燕乐存(YannLeCun)等人开始将1974年提出的标准反向传播算法[3]应用于深度神经网络,这一网络被用于手写邮政编码识别。尽管算法可以成功执行,但计算代价非常巨大,神经网路的训练时间达到了3天,因而无法投入实际使用[4]。...
继续访问

卷积神经网络CNN特点功能及其缺陷_一只不出息的程序员的博客...
卷积:简单地说,图像经过平移,相应的特征图上的表达也是平移的。 下图只是一个为了说明这个问题的例子。输入图像的左下角有一个人脸,经过卷积,人脸的特征(眼睛,鼻子)也位于特征图的左下角。 在神经网络中,卷积被定义为不同位置的特征...
记录 训练卷积神经网络时遇到的问题_后知后觉w的博客
记录 训练卷积神经网络时遇到的问题 问题1、softmax分类的loss最后会停在0.6931这个值 原因分析:在分类层使用了keras.layers.Lambda,导致分类器没有可训练的参数,因此没有分类能力,即,无论是否为object,softmax的输出都是0.5,根据loss...
都说卷积神经网络是个好东西,但它有什么弊端呢?
图片来源:Mathworks翻译 | 王赫编辑 | Donna2012年,三位深度学习的“巨人”Alex Krizhevsky, Ilya Sutskever 和 Geoffrey Hinton,联合发表了题为 “ImageNet Classification with Deep Convolutional Networks” 的论文。自此,卷积神经网络( CNNs )就成了一个万人追捧的工具,并
继续访问
卷积神经网络—全连接层
卷积神经网络—全连接层 全连接层 全连接层与卷积层 全连接层与GAP(全局平均池化层) [1] https://blog.csdn.net/Touch_Dream/article/details/79775786 [2] https://www.cnblogs.com/zongfa/p/9048680.html [3] https://www.hu.com/question/410379...
继续访问
五、卷积神经网络CNN5(卷积相关问题2)_满满myno的博客
输出深度(通道)与卷积核(过滤器)的个数相等。 激活函数通常放在卷积神经网络的那个操作之后 通常放在卷积层之后。 如何理解最大池化层有几分缩小 池化层:对输入的特征图进行压缩,一方面使特征图变小,简化网络计算复杂度;一方面 ...
卷积神经网络的缺点
(1)效果好是因为仿生学,缺点是无法扩展到平面视觉以外的地方吧。 (2)缺点一:实现比较复杂。缺点二:训练所需时间比较久。 (3)不是单一算法,不同的任务需要单独训练 (4)世界(物理空间、解空间等)是连续且局部平坦的+规律/特征具有时空局部平移不变性,即世界存在局部平移不变的统计规律 举个例子:在地球表面某局部画三角形,发现内角和总是等于180,并且随便跑到地球的哪里都是如此,但是如果你
继续访问
神经网络 卷积神经网络,卷积神经网络常见问题
卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。[1] 它包括卷积层(alternatingconvolutionallayer)和池层(poolinglayer)。卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。...
继续访问

卷积神经网络(CNN)入门常见问题解答
目录 什么是神经元? 激活函数的作用? 什么是神经网络? CNN怎么进行识别? 计算机如何识别图像? CNN如何更准确人性化的对比图像? 什么是卷积操作? 感谢作者: CNN笔记:通俗理解卷积神经网络_v_JULY_v的博客-CSDN博客_卷积神经网络通俗理解 什么是神经元? 神经网络由大量的神经元相互连接而成。每个神经元接受线性组合的输入后,最开始只是简单的线性加权,后来给每个神经元加上了非线性的激活函数,从而进行非线性变换后输出。每两个神经元之间的连接代表加权值,称...
继续访问

卷积神经网络——解决参数太多问题
一、全连接网路的局限性 图像变大导致色彩书变多,不好解决 不便处理高维数据 对于比较复杂的高维数据,如果按照全连接的方法,则只能通过增加节点、增加层数的方式来解决。增加节点会引起参数过多的问题。由于隐藏层神经网络使用的是sigmod或tanh激活函数,其反向传播的有效成层数只能在4~6层左右。 二、理解卷积神经网络 三、网络结构 卷积神经网络的结构与全连接网络相比复杂很多。它的网络结构主要包括卷积层、池化层。细节又可以分为滤波器、步长、卷积操作、池化操作。 1.网络结构描述 对于一般的图片会使用多个卷积
继续访问
人工智能深度学习卷积神经网络入门
<span style="font-size:16px;">"java大数据人工智能培训学校全套教材"系列课程由1000集视频构成,基本就 是1)时下流行的java培训学校主流内部教材,2)和市面上培训学校的通 行的课程体系几乎一样。所以这套课程都能自己学下来,等于上了培训学校一次,完全可以找个java工程师的工作了。</span><br /> <br /> <span style="font-size:14px;"><span style="font-size:16px;">  通过学习卷积神经网络概述,为什么引入神经网络来做识别,判断,预测,</span><strong><span style="font-size:16px;">训练模型</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">激活函数</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">sigmoid激活函数</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">导数和切线</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">sigmoid激活函数如何求导</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">链式法则</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">梯度</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">梯度下降法与delta法则</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">BP(back propagation)误差逆传播神经网络</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">卷积到底有什么作用?如何做到特征提取</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">池化的名字由来</span></strong><span style="font-size:16px;">,</span><strong><strong><span style="font-size:16px;">dropout</span></strong></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">Anaconda Prompt的用法</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">Jupyter notebook的用法</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">Spyder的用法</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">建立安装Tensorflow所需的Anaconda虚拟环境</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">如何在Anaconda虚拟环境安装Tensorflow与Keras</span></strong><span style="font-size:16px;">概念等让大家对人工智能,卷积神经网络快速入门。</span></span><br /> <br /> <span style="font-size:16px;">课程特色:专业细致,偏案例,理论强。</span><br /> <br /> <span style="font-size:14px;"><span style="font-size:16px;">课程软件使用:</span><span style="font-size:14px;"><strong><span style="font-size:16px;">Anaconda,</span><span style="font-size:14px;"><strong><span><span style="font-size:16px;">Spyder,</span><span style="font-size:16px;"><strong><span style="font-size:16px;">Jupyter notebook</span></strong></span></span></strong></span></strong></span></span><br /> <br /> <span style="font-size:16px;">重要声明:</span><br /> <br /> <span style="font-size:16px;">1) 如果感觉噪音大,可以选择不用耳机,加音箱或用电脑原声 </span><br /> <br /> <span style="font-size:14px;"><span style="font-size:16px;">2) 既然我们的名字叫</span><span style="font-size:16px;">人工智能深度学习卷积神经网络入门</span><span style="font-size:16px;">,这个课程的特点就在于成本最低的, 让你最快速的,最容易的入门。</span><span style="font-size:16px;">人工智能深度学习卷积神经网络入门</span><span style="font-size:16px;">的最大的难点在于入门入不了,从而最终放弃。俗话说师傅领进门,修行在个人。只要入了门了,后面的事都好办。选课前,务必注意本章的学习目标和内容。想学更多,注意后边的课程。</span></span>
继续访问

python卷积神经网络回归预测_回归[keras]的一维卷积神经网络,做
在上一篇博客里我介绍了如何利用keras对一个给定的数据集来完成多分类任务。100%的分类准确度验证了分类模型的可行性和数据集的准确度。在这篇博客当中我将利用一个稍加修改的数据集来完成线性回归任务。相比较以往的线性回归处理方式,我认为使用神经网络实现线性回归要简单和准确得多。数据集大小仍然是247*900,不同的是数据集的第247位变成了湿度特征的真实湿度值。不同于分类算法得到的决策面,回归算法得...
继续访问
卷积神经网络之全连接层
大多数内容来源于 :卷积神经网络中的全连接层 全连接层的作用是: 连接所有的特征,将输出值送给分类器 (如softmax分类器),其将卷积输出的二维特征图转化成 (N * 1)一维的一个向量。 最后的两列小圆球就是两个全连接层,在最后一层卷积结束后,又进行了一次池化操作,输出了20个 12*12 的图像(20指最后一层的厚度),然后通过了一个全连接层变成了 1*100 的向量(第一个全连接层神...
继续访问

人工神经网络的功能特点,神经网络的优缺点
此时,网络学习了过多的样本细节,而不能反映样本内含的规律由于BP算法本质上为梯度下降法,而它所要优化的目标函数又非常复杂,因此,必然会出现“锯齿形现象”,这使得BP算法低效;多层前向BP网络的问题:从数学角度看,BP算法为一种局部搜索的优化方法,但它要解决的问题为求解复杂非线性函数的全局极值,因此,算法很有可能陷入局部极值,使训练失败;例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。第三,具有高速寻找优化解的能力。...
继续访问

【Keras】卷积神经网络数据回归预测实战
基于卷积神经网络的数据回归预测
继续访问

热门推荐 反向传播算法(过程及公式推导)
反向传播算法(Backpropagation)是目前用来训练人工神经网络(Artificial Neural Network,ANN)的最常用且最有效的算法。
继续访问
深度学习---卷积神经网络解决分类与回归问题
一、CNN神经网络的发展史: Lenet,1986年 Alexnet,2012年 2012年,Imagenet比赛冠军的model——Alexnet [2](以第一作者alex命名),AlexNet 是一种典型的 convolutional neural network,它由5层 convolutional layer,2层 fully connected layer,和最后一层 label layer (1000个node, 每个node代表ImageNet中的一个类别) 组成 GoogleNet
继续访问

深度学习之卷积神经网络CNN详细
计算机视觉、自然语言处理等领域(图像分类、图像分割、图像检测、文本
继续访问

一文让你彻底了解卷积神经网络
目录 卷积层 直观理解卷积 卷积计算流程 计算过程: 思考: 池化层(PoolingLayer) 卷积神经网络的组成 前向传播与反向传播 卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出

⑽ 卷积神经网络

关于花书中卷积网络的笔记记录于 https://www.jianshu.com/p/5a3c90ea0807 。

卷积神经网络(Convolutional Neural Network,CNN或ConvNet)是一种具有 局部连接、权重共享 等特性的深层前馈神经网络。卷积神经网络是受生物学上感受野的机制而提出。 感受野(Receptive Field) 主要是指听觉、视觉等神经系统中一些神经元的特性,即 神经元只接受其所支配的刺激区域内的信号

卷积神经网络最早是主要用来处理图像信息。如果用全连接前馈网络来处理图像时,会存在以下两个问题:

目前的卷积神经网络一般是由卷积层、汇聚层和全连接层交叉堆叠而成的前馈神经网络,使用反向传播算法进行训练。 卷积神经网络有三个结构上的特性:局部连接,权重共享以及汇聚 。这些特性使卷积神经网络具有一定程度上的平移、缩放和旋转不变性。

卷积(Convolution)是分析数学中一种重要的运算。在信号处理或图像处理中,经常使用一维或二维卷积。

一维卷积经常用在信号处理中,用于计算信号的延迟累积。假设一个信号发生器每个时刻t 产生一个信号 ,其信息的衰减率为 ,即在 个时间步长后,信息为原来的 倍。假设 ,那么在时刻t收到的信号 为当前时刻产生的信息和以前时刻延迟信息的叠加:

我们把 称为 滤波器(Filter)或卷积核(Convolution Kernel) 。假设滤波器长度为 ,它和一个信号序列 的卷积为:

信号序列 和滤波器 的卷积定义为:

一般情况下滤波器的长度 远小于信号序列长度 ,下图给出一个一维卷积示例,滤波器为 :

二维卷积经常用在图像处理中。因为图像为一个两维结构,所以需要将一维卷积进行扩展。给定一个图像 和滤波器 ,其卷积为:

下图给出一个二维卷积示例:

注意这里的卷积运算并不是在图像中框定卷积核大小的方框并将各像素值与卷积核各个元素相乘并加和,而是先把卷积核旋转180度,再做上述运算。

在图像处理中,卷积经常作为特征提取的有效方法。一幅图像在经过卷积操作后得到结果称为 特征映射(Feature Map)

最上面的滤波器是常用的高斯滤波器,可以用来对图像进行 平滑去噪 ;中间和最下面的过滤器可以用来 提取边缘特征

在机器学习和图像处理领域,卷积的主要功能是在一个图像(或某种特征)上滑动一个卷积核(即滤波器),通过卷积操作得到一组新的特征。在计算卷积的过程中,需要进行卷积核翻转(即上文提到的旋转180度)。 在具体实现上,一般会以互相关操作来代替卷积,从而会减少一些不必要的操作或开销。

互相关(Cross-Correlation)是一个衡量两个序列相关性的函数,通常是用滑动窗口的点积计算来实现 。给定一个图像 和卷积核 ,它们的互相关为:

互相关和卷积的区别仅在于卷积核是否进行翻转。因此互相关也可以称为不翻转卷积 。当卷积核是可学习的参数时,卷积和互相关是等价的。因此,为了实现上(或描述上)的方便起见,我们用互相关来代替卷积。事实上,很多深度学习工具中卷积操作其实都是互相关操作。

在卷积的标准定义基础上,还可以引入滤波器的 滑动步长 零填充 来增加卷积多样性,更灵活地进行特征抽取。

滤波器的步长(Stride)是指滤波器在滑动时的时间间隔。

零填充(Zero Padding)是在输入向量两端进行补零。

假设卷积层的输入神经元个数为 ,卷积大小为 ,步长为 ,神经元两端各填补 个零,那么该卷积层的神经元数量为 。

一般常用的卷积有以下三类:

因为卷积网络的训练也是基于反向传播算法,因此我们重点关注卷积的导数性质:

假设 。

, , 。函数 为一个标量函数。

则由 有:

可以看出, 关于 的偏导数为 和 的卷积

同理得到:

当 或 时, ,即相当于对 进行 的零填充。从而 关于 的偏导数为 和 的宽卷积

用互相关的“卷积”表示,即为(注意 宽卷积运算具有交换性性质 ):

在全连接前馈神经网络中,如果第 层有 个神经元,第 层有 个神经元,连接边有 个,也就是权重矩阵有 个参数。当 和 都很大时,权重矩阵的参数非常多,训练的效率会非常低。

如果采用卷积来代替全连接,第 层的净输入 为第 层活性值 和滤波器 的卷积,即:

根据卷积的定义,卷积层有两个很重要的性质:

由于局部连接和权重共享,卷积层的参数只有一个m维的权重 和1维的偏置 ,共 个参数。参数个数和神经元的数量无关。此外,第 层的神经元个数不是任意选择的,而是满足 。

卷积层的作用是提取一个局部区域的特征,不同的卷积核相当于不同的特征提取器。

特征映射(Feature Map)为一幅图像(或其它特征映射)在经过卷积提取到的特征,每个特征映射可以作为一类抽取的图像特征。 为了提高卷积网络的表示能力,可以在每一层使用多个不同的特征映射,以更好地表示图像的特征。

在输入层,特征映射就是图像本身。如果是灰度图像,就是有一个特征映射,深度 ;如果是彩色图像,分别有RGB三个颜色通道的特征映射,深度 。

不失一般性,假设一个卷积层的结构如下:

为了计算输出特征映射 ,用卷积核 分别对输入特征映射 进行卷积,然后将卷积结果相加,并加上一个标量偏置 得到卷积层的净输入 再经过非线性激活函数后得到输出特征映射 。

在输入为 ,输出为 的卷积层中,每个输出特征映射都需要 个滤波器以及一个偏置。假设每个滤波器的大小为 ,那么共需要 个参数。

汇聚层(Pooling Layer)也叫子采样层(Subsampling Layer),其作用是进行特征选择,降低特征数量,并从而减少参数数量。

常用的汇聚函数有两种:

其中 为区域 内每个神经元的激活值。

可以看出,汇聚层不但可以有效地减少神经元的数量,还可以使得网络对一些小的局部形态改变保持不变性,并拥有更大的感受野。

典型的汇聚层是将每个特征映射划分为 大小的不重叠区域,然后使用最大汇聚的方式进行下采样。汇聚层也可以看做是一个特殊的卷积层,卷积核大小为 ,步长为 ,卷积核为 函数或 函数。过大的采样区域会急剧减少神经元的数量,会造成过多的信息损失。

一个典型的卷积网络是由卷积层、汇聚层、全连接层交叉堆叠而成。

目前常用卷积网络结构如图所示,一个卷积块为连续 个卷积层和 个汇聚层( 通常设置为 , 为 或 )。一个卷积网络中可以堆叠 个连续的卷积块,然后在后面接着 个全连接层( 的取值区间比较大,比如 或者更大; 一般为 )。

目前,整个网络结构 趋向于使用更小的卷积核(比如 和 )以及更深的结构(比如层数大于50) 。此外,由于卷积的操作性越来越灵活(比如不同的步长),汇聚层的作用变得也越来越小,因此目前比较流行的卷积网络中, 汇聚层的比例也逐渐降低,趋向于全卷积网络

在全连接前馈神经网络中,梯度主要通过每一层的误差项 进行反向传播,并进一步计算每层参数的梯度。在卷积神经网络中,主要有两种不同功能的神经层:卷积层和汇聚层。而参数为卷积核以及偏置,因此 只需要计算卷积层中参数的梯度。

不失一般性,第 层为卷积层,第 层的输入特征映射为 ,通过卷积计算得到第 层的特征映射净输入 ,第 层的第 个特征映射净输入

由 得:

同理可得,损失函数关于第 层的第 个偏置 的偏导数为:

在卷积网络中,每层参数的梯度依赖其所在层的误差项 。

卷积层和汇聚层中,误差项的计算有所不同,因此我们分别计算其误差项。

第 层的第 个特征映射的误差项 的具体推导过程如下:

其中 为第 层使用的激活函数导数, 为上采样函数(upsampling),与汇聚层中使用的下采样操作刚好相反。如果下采样是最大汇聚(max pooling),误差项 中每个值会直接传递到上一层对应区域中的最大值所对应的神经元,该区域中其它神经元的误差项的都设为0。如果下采样是平均汇聚(meanpooling),误差项 中每个值会被平均分配到上一层对应区域中的所有神经元上。

第 层的第 个特征映射的误差项 的具体推导过程如下:

其中 为宽卷积。

LeNet-5虽然提出的时间比较早,但是是一个非常成功的神经网络模型。基于LeNet-5 的手写数字识别系统在90年代被美国很多银行使用,用来识别支票上面的手写数字。LeNet-5 的网络结构如图:

不计输入层,LeNet-5共有7层,每一层的结构为:

AlexNet是第一个现代深度卷积网络模型,其首次使用了很多现代深度卷积网络的一些技术方法,比如采用了ReLU作为非线性激活函数,使用Dropout防止过拟合,使用数据增强来提高模型准确率等。AlexNet 赢得了2012 年ImageNet 图像分类竞赛的冠军。

AlexNet的结构如图,包括5个卷积层、3个全连接层和1个softmax层。因为网络规模超出了当时的单个GPU的内存限制,AlexNet 将网络拆为两半,分别放在两个GPU上,GPU间只在某些层(比如第3层)进行通讯。

AlexNet的具体结构如下:

在卷积网络中,如何设置卷积层的卷积核大小是一个十分关键的问题。 在Inception网络中,一个卷积层包含多个不同大小的卷积操作,称为Inception模块。Inception网络是由有多个inception模块和少量的汇聚层堆叠而成

v1版本的Inception模块,采用了4组平行的特征抽取方式,分别为1×1、3× 3、5×5的卷积和3×3的最大汇聚。同时,为了提高计算效率,减少参数数量,Inception模块在进行3×3、5×5的卷积之前、3×3的最大汇聚之后,进行一次1×1的卷积来减少特征映射的深度。如果输入特征映射之间存在冗余信息, 1×1的卷积相当于先进行一次特征抽取

阅读全文

与全卷积神经网络权重共享相关的资料

热点内容
网络共享中心没有网卡 浏览:513
电脑无法检测到网络代理 浏览:1364
笔记本电脑一天会用多少流量 浏览:551
苹果电脑整机转移新机 浏览:1368
突然无法连接工作网络 浏览:1035
联通网络怎么设置才好 浏览:1213
小区网络电脑怎么连接路由器 浏览:1010
p1108打印机网络共享 浏览:1203
怎么调节台式电脑护眼 浏览:671
深圳天虹苹果电脑 浏览:909
网络总是异常断开 浏览:603
中级配置台式电脑 浏览:967
中国网络安全的战士 浏览:623
同志网站在哪里 浏览:1404
版观看完整完结免费手机在线 浏览:1449
怎样切换默认数据网络设置 浏览:1099
肯德基无线网无法访问网络 浏览:1275
光纤猫怎么连接不上网络 浏览:1449
神武3手游网络连接 浏览:956
局网打印机网络共享 浏览:991