A. 知识普及-安全态势
随着网络规模和复杂性不断增大,网络的攻击技术不断革新,新型攻击工具大量涌现,传统的网络安全技术显得力不从心,网络入侵不可避免,网络安全问题越发严峻。
单凭一种或几种安全技术很难应对复杂的安全问题,网络安全人员的关注点也从单个安全问题的解决,发展到研究整个网络的安全状态及其变化趋势。
网络安全态势感知对影响网络安全的诸多要素进行获取、理解、评估以及预测未来的发展趋势,是对网络安全性定量分析的一种手段,是对网络安全性的精细度量,态势感知成已经为网络安全2.0时代安全技术的焦点,对保障网络安全起着非常重要的作用。
一、态势感知基本概念
1.1 态势感知通用定义
随着网络安全态势感知研究领域的不同,人们对于态势感知的定义和理解也有很大的不同,其中认同度较高的是Endsley博士所给出的动态环境中态势感知的通用定义:
态势感知是感知大量的时间和空间中的环境要素,理解它们的意义,并预测它们在不久将来的状态。
在这个定义中,我们可以提炼出态势感知的三个要素:感知、理解和预测,也就是说态势感知可以分成感知、理解和预测三个层次的信息处理,即:
感知:感知和获取环境中的重要线索或元素;
理解:整合感知到的数据和信息,分析其相关性;
预测:基于对环境信息的感知和理解,预测相关知识的未来的发展趋势。
1.2 网络安全态势感知概念
目前,对网络安全态势感知并未有一个统一而全面的定义,我们可以结合态势感知通用定义来对对网络安全态势感知给出一个基本描述,即:
网络安全态势感知是综合分析网络安全要素,评估网络安全状况,预测其发展趋势,并以可视化的方式展现给用户,并给出相应的报表和应对措施。
根据上述概念模型,网络安全态势感知过程可以分为一下四个过程:
1)数据采集:通过各种检测工具,对各种影响系统安全性的要素进行检测采集获取,这一步是态势感知的前提;
2)态势理解:对各种网络安全要素数据进行分类、归并、关联分析等手段进行处理融合,对融合的信息进行综合分析,得出影响网络的整体安全状况,这一步是态势感知基础;
3)态势评估:定性、定量分析网络当前的安全状态和薄弱环节,并给出相应的应对措施,这一步是态势感知的核心;
4)态势预测:通过对态势评估输出的数据,预测网络安全状况的发展趋势,这一步是态势感知的目标。
网络安全态势感知要做到深度和广度兼备,从多层次、多角度、多粒度分析系统的安全性并提供应对措施,以图、表和安全报表的形式展现给用户。
二、态势感知常用分析模型
在网络安全态势感知的分析过程中,会应用到很多成熟的分析模型,这些模型的分析方法虽各不相同,但多数都包含了感知、理解和预测的三个要素。
2.1 始于感知:Endsley模型
Endsley模型中,态势感知始于感知。
感知包含对网络环境中重要组成要素的状态、属性及动态等信息,以及将其归类整理的过程。
理解则是对这些重要组成要素的信息的融合与解读,不仅是对单个分析对象的判断分析,还包括对多个关联对象的整合梳理。同时,理解是随着态势的变化而不断更新演变的,不断将新的信息融合进来形成新的理解。
在了解态势要素的状态和变化的基础上,对态势中各要素即将呈现的状态和变化进行预测。
2.2 循环对抗:OODA模型
OODA是指观察(Oberve)、调整(Orient)、决策(Decide)以及行动(Act),它是信息战领域的一个概念。OODA是一个不断收集信息、评估决策和采取行动的过程。
将OODA循环应用在网络安全态势感知中,攻击者与分析者都面临这样的循环过程:在观察中感知攻击与被攻击,在理解中调整并决策攻击与防御方法,预测对手下一个动作并发起行动,同时进入下一轮的观察。
如果分析者的OODA循环比攻击者快,那么分析者有可能“进入”对方的循环中,从而占据优势。例如通过关注对方正在进行或者可能进行的事情,即分析对手的OODA环,来判断对手下一步将采取的动作,而先于对方采取行动。
2.3 数据融合:JDL模型
JDL(Joint Directors of Laboratories)模型是信息融合系统中的一种信息处理方式,由美国国防部成立的数据融合联合指挥实验室提出。
JDL模型将来自不同数据源的数据和信息进行综合分析,根据它们之间的相互关系,进行目标识别、身份估计、态势评估和威胁评估,融合过程会通过不断的精炼评估结果来提高评估的准确性。
在网络安全态势感知中,面对来自内外部大量的安全数据,通过JDL模型进行数据的融合分析,能够实现对分析目标的感知、理解与影响评估,为后续的预测提供重要的分析基础和支撑。
2.4 假设与推理:RPD模型
RPD(Recognition Primed Decision)模型中定义态势感知分为两个阶段:感知和评估。
感知阶段通过特征匹配的方式,将现有态势与过去态势进行对比,选取相似度高的过去态势,找出当时采取的哪些行动方案是有效的。评估阶段分析过去相似态势有效的行动方案,推测当前态势可能的演化过程,并调整行动方案。
以上方式若遇到匹配结果不理想的情况,则采取构造故事的方式,即根据经验探索潜在的假设,再评估每个假设与实际发生情况的相符度。在RPD模型中对感知、理解和预测三要素的主要体现为:基于假设进行相关信息的收集(感知),特征匹配和故事构造(理解),假设驱动思维模拟与推测(预测)。
三、态势感知应用关键点
当前,单维度的网络安全防御技术手段,已经难以应对复杂的网络环境和大量存在的安全问题,对网络安全态势感知具体模型和技术的研究,已经成为2.0时代网络安全技术的焦点,同时很多机构也已经推出了网络安全态势感知产品和解决方案。
但是,目前市场上的的相关产品和解决方案,都相对偏重于网络安全态势的某一个或某几个方面的感知,网络安全态势感知的数据分析的深度和广度还需要进一步加强,同时网络安全态势感知与其它系统平台的联动不足,无法将态势感知与安全运营深入融合。
为此,太极信安认为网络安全态势感知平台的建设,应着重考虑以下几个方面的内容:
1、在数据采集方面,网络安全数据来源要尽可能的丰富,应该包括网络结构数据、网络服务数据、漏洞数据、脆弱性数据、威胁与入侵数据、用户异常行为数据等等,只有这样态势评估结果才能准确。
2、在态势评估方面,态势感评估要对多个层次、多个角度进行评估,能够评估网络的业务安全、数据安全、基础设施安全和整体安全状况,并且应该针对不同的应用背景和不同的网络规模选择不同的评估方法。
3、在态势感知流程方面,态势感知流程要规范,所采用的算法要简单,应该选择规范化的、易操作的评估模型和预测模型,能够做到实时准确的评估网络安全态势。
4、在态势预测方面,态势感知要能支持对不同的评估结果预测其发展趋势,预防大规模安全事件的发生。
5、在态势感知结果显示方面,态势感知能支持多种形式的可视化显示,支持与用户的交互,能根据不同的应用需求生成态势评测报表,并提供相应的改进措施。
四、总结
上述几种模型和应用关键点对网络安全态势感知来讲至关重要,将这些基本概念和关键点进行深入理解并付诸于实践,才能真正帮助决策者获得网络安全态势感知能力。
太极信安认为,建设网络安全态势感知平台,应以“业务+数据定义安全”战略为核心驱动,基于更广、更深的数据来源分析,以用户实际需求为出发点,从综合安全、业务安全、数据安全、信息基础设施安全等多个维度为用户提供全面的安全态势感知,在认知、理解、预测的基础上,真正帮助用户实现看见业务、看懂威胁、看透风险、辅助决策。
摘自 CSDN 道法一自然
B. 什么手段可以有效应对较大范围的安全事件的不良影响保证关键服务和数据的可用
网络安全评估方法按照其原理来说可以分为以下三大类:
基于数学模型的方法最早被用于态势评估。该评估方法根据影响网络态势的不同因素,构造评价函数,然后通过评价函数将多个态势因子聚集得到态势结果。基于数学模型的方法通过借鉴传统通用的多目标决策理论的一些方法来解决态势评估的问题,其优点就是可以形象直观的反映网络安全态势情况,比如传统的权重分析法,集对分析方法都属于该模型的范畴。但是针对该方法也存在着许多的不足,比如说数学模型中核心评价函数的构造、参数的选择等没有统一的评价标准和衡量体系,往往借助该领域专家的知识和经验来进行评估,因此不可避免的带有专家的主观意见。
基于知识推理的方法主要用来处理一些数学模型难以处理的情况。知识推理方法能够模拟人类的思维方式,相对于传统的数学模型而言,评价过程具有一定的智能性,在一定程度上避免了人的主观因素对态势评估客观性的影响。知识推理方法一方面借助模糊集、概率论、D-S 证据理论等处理不确定性信息;另一方面通过推理汇聚多源多属性信息。在知识推理方面研究的热点有基于故障图模型的安全态势评估方法、基于攻击树的安全态势评估方法、基于特权图的安全态势评估方法、基于攻击图模型的安全态势评估方法、基于贝叶斯网络的安全态势评估方法、基于层次化的安全态势评估方法等。
随着机器学习技术的发展,模式识别方法被引入到网络安全态势评估的研究中。该方法借鉴数据挖掘算法的理念,主要依靠从训练样本或者历史数据中挖掘态势模式来进行态势评估。该方法具有强大的学习能力,其过程主要分为建立模式和模式匹配两个阶段。在网络安全态势评估中使用该方法的代表性工作包括:支持向量机的方法、基于神经网络、灰关联度、粗集理论和基于隐马尔科夫模型的态势评估方法。
C. 态势感知,懂的人不用解释,现在对于态势感知更多的是信息网络的安全态势感知,
大数据时代,除在信息网络的安全方面外,在无人机、无人驾驶、气象分析、军事、交通轨道等等方面,态势感知的应用研究日益广泛和必要!
一般来说,态势感知在大规模系统环境中,对能够引起系统状态发生变化的安全要素进行获取、理解、显示以及预测未来的发展趋势。联合作战、网络中心战的提出,推动了态势感知的产生和不断发展,作为实现态势感知的重要平台和物质基础,态势图对数据和信息复杂的需求和特性构成了突出的大数据问题.从大数据的高度思考,解决态势感知面临的信息处理难题,是研究联合作战态势感知的重要方法.通过分析联合作战态势感知的数据类型、结构和特点,得出态势感知面临着大数据挑战的结论.初步探讨了可能需要解决的问题和前沿信息技术的应用需求,最后对关键数据和信息处理技术进行了研究.该研究对于“大数据”在军事信息处理和数据化决策等领域的研究具有重要探索价值。
相关参考(摘录网上):
1 引言
随着计算机和通信技术的迅速发展, 计算机网络的应用越来越广泛, 其规模越来越庞大, 多层面的网络安全威胁和安全风险也在不断增加, 网络病毒、 Dos/DDos攻击等构成的威胁和损失越来越大, 网络攻击行为向着分布化、 规模化、 复杂化等趋势发展, 仅仅依靠防火墙、 入侵检测、 防病毒、 访问控制等单一的网络安全防护技术, 已不能满足网络安全的需求, 迫切需要新的技术, 及时发现网络中的异常事件, 实时掌握网络安全状况, 将之前很多时候亡羊补牢的事中、 事后处理,转向事前自动评估预测, 降低网络安全风险, 提高网络安全防护能力。
网络安全态势感知技术能够综合各方面的安全因素, 从整体上动态反映网络安全状况, 并对网络安全的发展趋势进行预测和预警。 大数据技术特有的海量存储、 并行计算、 高效查询等特点, 为大规模网络安全态势感知技术的突破创造了机遇, 借助大数据分析, 对成千上万的网络日志等信息进行自动分析处理与深度挖掘, 对网络的安全状态进行分析评价, 感知网络中的异常事件与整体安全态势。
2 网络安全态势相关概念
2.1 网络态势感知
态势感知(Situation Awareness, SA) 的概念是1988年Endsley提出的, 态势感知是在一定时间和空间内对环境因素的获取, 理解和对未来短期的预测。 整个态势感知过程可由图1所示的三级模型直观地表示出来。
所谓网络态势是指由各种网络设备运行状况、 网络行为以及用户行为等因素所构成的整个网络当前状态和变化趋势。
网络态势感知(Cyberspace Situation Awareness,CSA) 是1999年Tim Bass首次提出的, 网络态势感知是在大规模网络环境中, 对能够引起网络态势发生变化的安全要素进行获取、 理解、 显示以及预测最近的发展趋势。
态势是一种状态、 一种趋势, 是整体和全局的概念, 任何单一的情况或状态都不能称之为态势。 因此对态势的理解特别强调环境性、 动态性和整体性, 环境性是指态势感知的应用环境是在一个较大的范围内具有一定规模的网络; 动态性是态势随时间不断变化, 态势信息不仅包括过去和当前的状态, 还要对未来的趋势做出预测; 整体性是态势各实体间相互关系的体现,某些网络实体状态发生变化, 会影响到其他网络实体的状态, 进而影响整个网络的态势。
2.2 网络安全态势感知
网络安全态势感知就是利用数据融合、 数据挖掘、智能分析和可视化等技术, 直观显示网络环境的实时安全状况, 为网络安全提供保障。 借助网络安全态势感知, 网络监管人员可以及时了解网络的状态、 受攻击情况、 攻击来源以及哪些服务易受到攻击等情况, 对发起攻击的网络采取措施; 网络用户可以清楚地掌握所在网络的安全状态和趋势, 做好相应的防范准备, 避免和减少网络中病毒和恶意攻击带来的损失; 应急响应组织也可以从网 络安全态势中了解所服务网 络的安全状况和发展趋势, 为 制定有预见性的应急预案提供基础。
3 网络安全态势感知相关技术
对于大规模网络而言, 一方面网络节点众多、 分支复杂、 数据流量大, 存在多种异构网络环境和应用平台; 另一方面网络攻击技术和手段呈平台化、 集成化和自 动化的发展趋势, 网络攻击具有更强的隐蔽性和更长的潜伏时间, 网络威胁不断增多且造成的损失不断增大。 为了实时、 准确地显示整个网络安全态势状况, 检测出潜在、 恶意的攻击行为, 网络安全态势感知要在对网络资源进行要素采集的基础上, 通过数据预处理、 网络安全态势特征提取、 态势评估、 态势预测和态势展示等过程来完成, 这其中涉及许多相关的技术问题, 主要包括数据融合技术、 数据挖掘技术、 特征提取技术、 态势预测技术和可视化技术等。
3.1 数据融合技术
由于网络空间态势感知的数据来自众多的网络设备, 其数据格式、 数据内容、 数据质量千差万别, 存储形式各异, 表达的语义也不尽相同。 如果能够将这些使用不同途径、 来源于不同网络位置、 具有不同格式的数据进行预处理, 并在此基础上进行归一化融合操作,就可以为网络安全态势感知提供更为全面、 精准的数据源, 从而得到更为准确的网络态势。 数据融合技术是一个多级、 多层面的数据处理过程, 主要完成对来自网络中具有相似或不同特征模式的多源信息进行互补集成, 完成对数据的自动监测、 关联、 相关、 估计及组合等处理, 从而得到更为准确、 可靠的结论。 数据融合按信息抽象程度可分为从低到高的三个层次: 数据级融合、 特征级融合和决策级融合, 其中特征级融合和决策级融合在态势感知中具有较为广泛的应用。
3.2 数据挖掘技术
网络安全态势感知将采集的大量网络设备的数据经过数据融合处理后, 转化为格式统一的数据单元。这些数据单元数量庞大, 携带的信息众多, 有用信息与无用信息鱼龙混杂, 难以辨识。 要掌握相对准确、 实时的网络安全态势, 必须剔除干扰信息。 数据挖掘就是指从大量的数据中挖掘出有用的信息, 即从大量的、 不完全的、 有噪声的、 模糊的、 随机的实际应用数据中发现隐含的、 规律的、 事先未知的, 但又有潜在用处的并且最终可理解的信息和知识的非平凡过程( NontrivialProcess) [1 ]。 数据挖掘可分为描述性挖掘和预测性挖掘, 描述性挖掘用于刻画数据库中数据的一般特性; 预测性挖掘在当前数据上进行推断, 并加以预测。 数据挖掘方法主要有: 关联分析法、 序列模式分析法、 分类分析法和聚类分析法。 关联分析法用于挖掘数据之间的联系; 序列模式分析法侧重于分析数据间的因果关系;分类分析法通过对预先定义好的类建立分析模型, 对数据进行分类, 常用的模型有决策树模型、 贝叶斯分类模型、 神经网络模型等; 聚类分析不依赖预先定义好的类, 它的划分是未知的, 常用的方法有模糊聚类法、 动态聚类法、 基于密度的方法等。
3.3 特征提取技术
网络安全态势特征提取技术是通过一系列数学方法处理, 将大规模网络安全信息归并融合成一组或者几组在一定值域范围内的数值, 这些数值具有表现网络实时运行状况的一系列特征, 用以反映网络安全状况和受威胁程度等情况。 网络安全态势特征提取是网络安全态势评估和预测的基础, 对整个态势评估和预测有着重要的影响, 网络安全态势特征提取方法主要有层次分析法、 模糊层次分析法、 德尔菲法和综合分析法。
3.4 态势预测技术
网络安全态势预测就是根据网络运行状况发展变化的实际数据和历史资料, 运用科学的理论、 方法和各种经验、 判断、 知识去推测、 估计、 分析其在未来一定时期内可能的变化情况, 是网络安全态势感知的一个重要组成部分。 网络在不同时刻的安全态势彼此相关, 安全态势的变化有一定的内部规律, 这种规律可以预测网络在将来时刻的安全态势, 从而可以有预见性地进行安全策略的配置, 实现动态的网络安全管理, 预防大规模网络安全事件的发生。 网络安全态势预测方法主要有神经网络预测法、 时间序列预测法、 基于灰色理论预测法。
3.5 可视化技术
网络安全态势生成是依据大量数据的分析结果来显示当前状态和未来趋势, 而通过传统的文本或简单图形表示, 使得寻找有用、 关键的信息非常困难。 可视化技术是利用计算机图形学和图像处理技术, 将数据转换成图形或图像在屏幕上显示出来, 并进行交互处理的理论、 方法和技术。 它涉及计算机图形学、 图像处理、 计算机视觉、 计算机辅助设计等多个领域。 目前已有很多研究将可视化技术和可视化工具应用于态势感知领域, 在网络安全态势感知的每一个阶段都充分利用可视化方法, 将网络安全态势合并为连贯的网络安全态势图, 快速发现网络安全威胁, 直观把握网络安全状况。
4 基于多源日志的网络安全态势感知
随着网 络规模的 扩大以及网 络攻击复杂度的增加, 入侵检测、 防火墙、 防病毒、 安全审计等众多的安全设备在网络中得到广泛的应用, 虽然这些安全设备对网络安全发挥了一定的作用, 但存在着很大的局限,主要表现在: 一是各安全设备的海量报警和日志, 语义级别低, 冗余度高, 占用存储空间大, 且存在大量的误报, 导致真实报警信息被淹没。 二是各安全设备大多功能单一, 产生的报警信息格式各不相同, 难以进行综合分析整理, 无法实现信息共享和数据交互, 致使各安全设备的总体防护效能无法得以充分的发挥。 三是各安全设备的处理结果仅能单一体现网络某方面的运行状况, 难以提供全面直观的网络整体安全状况和趋势信息。 为了有效克服这些网络安全管理的局限, 我们提出了基于多源日志的网络安全态势感知。
4.1 基于多源日志的网络安全态势感知要素获取
基于多源日志的网络安全态势感知是对部署在网络中的多种安全设备提供的日志信息进行提取、 分析和处理, 实现对网络态势状况进行实时监控, 对潜在的、恶意的网络攻击行为进行识别和预警, 充分发挥各安全设备的整体效能, 提高网络安全管理能力。
基于多源日志的网络安全态势感知主要采集网络入口处防火墙日志、 入侵检测日志, 网络中关键主机日志以及主机漏洞信息, 通过融合分析这些来自不同设备的日志信息, 全面深刻地挖掘出真实有效的网络安全态势相关信息, 与仅基于单一日志源分析网络的安全态
势相比, 可以提高网络安全态势的全面性和准确性。
4.2 利用大数据进行多源日志分析处理
基于多源日志的网络安全态势感知采集了多种安全设备上以多样的检测方式和事件报告机制生成的海量数据, 而这些原始的日 志信息存在海量、 冗余和错误等缺陷, 不能作为态势感知的直接信息来源, 必须进行关联分析和数据融合等处理。 采用什么样的技术才能快速分析处理这些海量且格式多样的数据?
大数据的出现, 扩展了计算和存储资源, 大数据自身拥有的Variety支持多类型数据格式、 Volume大数据量存储、Velocity快速处理三大特征, 恰巧是基于多源日志的网络安全态势感知分析处理所需要的。 大数据的多类型数据格式, 可以使网络安全态势感知获取更多类型的日志数据, 包括网络与安全设备的日志、 网络运行情况信息、 业务与应用的日志记录等; 大数据的大数据量存储正是海量日志存储与处理所需要的; 大数据的快速处理为高速网络流量的深度安全分析提供了技术支持, 为高智能模型算法提供计算资源。 因此, 我们利用大数据所提供的基础平台和大数据量处理的技术支撑, 进行网络安全态势的分析处理。
关联分析。 网络中的防火墙日志和入侵检测日志都是对进入网络的安全事件的流量的刻画, 针对某一个可能的攻击事件, 会产生大量的日志和相关报警记录,这些记录存在着很多的冗余和关联, 因此首先要对得到的原始日志进行单源上的关联分析, 把海量的原始日志转换为直观的、 能够为人所理解的、 可能对网络造成危害的安全事件。 基于多源日志的网络安全态势感知采用基于相似度的报警关联, 可以较好地控制关联后的报警数量, 有利于减少复杂度。 其处理过程是: 首先提取报警日志中的主要属性, 形成原始报警; 再通过重复报警聚合, 生成聚合报警; 对聚合报警的各个属性定义相似度的计算方法, 并分配权重; 计算两个聚合报警的相似度, 通过与相似度阀值的比较, 来决定是否对聚合报警进行超报警; 最终输出属于同一类报警的地址范围和报警信息, 生成安全事件。
融合分析。 多源日志存在冗余性、 互补性等特点,态势感知借助数据融合技术, 能够使得多个数据源之间取长补短, 从而为感知过程提供保障, 以便更准确地生成安全态势。 经过单源日志报警关联过程, 分别得到各自的安全事件。 而对于来自防火墙和入侵检测日志的的多源安全事件, 采用D-S证据理论(由Dempster于1967年提出, 后由Shafer于1976年加以推广和发展而得名) 方法进行融合判别, 对安全事件的可信度进行评估, 进一步提高准确率, 减少误报。 D-S证据理论应用到安全事件融合的基本思路: 首先研究一种切实可行的初始信任分配方法, 对防火墙和入侵检测分配信息度函数; 然后通过D-S的合成规则, 得到融合之后的安全事件的可信度。
态势要素分析。 通过对网络入口处安全设备日 志的安全分析, 得到的只是进入目 标网络的可能的攻击信息, 而真正对网络安全状况产生决定性影响的安全事件, 则需要通过综合分析攻击知识库和具体的网络环境进行最终确认。 主要分为三个步骤: 一是通过对大量网络攻击实例的研究, 得到可用的攻击知识库, 主要包括各种网络攻击的原理、 特点, 以及它们的作用环境等; 二是分析关键主机上存在的系统漏洞和承载的服务的可能漏洞, 建立当前网络环境的漏洞知识库, 分析当前网络环境的拓扑结构、 性能指标等, 得到网络环境知识库; 三是通过漏洞知识库来确认安全事件的有效性, 也即对当前网络产生影响的网络攻击事件。 在网络安全事件生成和攻击事件确认的过程中, 提取出用于对整个网络安全态势进行评估的态势要素, 主要包括整个网络面临的安全威胁、 分支网络面临的安全威胁、 主机受到的安全威胁以及这些威胁的程度等。
5 结语
为了解决日益严重的网络安全威胁和挑战, 将态势感知技术应用于网络安全中, 不仅能够全面掌握当前网络安全状态, 还可以预测未来网络安全趋势。 本文在介绍网络安全态势相关概念和技术的基础上, 对基于多源日志的网络安全态势感知进行了探讨, 着重对基于多源日志的网络安全态势感知要素获取, 以及利用大数据进行多源日志的关联分析、 融合分析和态势要素分析等内容进行了研究, 对于态势评估、 态势预测和态势展示等相关内容, 还有待于进一步探讨和研究。
D. 如何对网络安全进行风险评估
安全风险分为四个颜色,红、蓝、黄、绿。
分别对应四个等级,其含义和用途:
(1)红色:表示禁止、停止,用于禁止标志、停止信号、车辆上的紧急制动手柄等;
(2)蓝色:表示指令、必须遵守的规定,一般用于指令标志;
(3)黄色:表示警告、注意,用于警告警戒标志、行车道中线等;
(4)绿色:表示提示安全状态、通行,用于提示标志、行人和车辆通行标志等。
(4)一种网络安全态势评估方法扩展阅读:
国家标准GB2893—82《 安全色》对安全色的含义及用途、照明要求、颜色范围以及检查与维修等均作了具体规定。
根据《安全色》(GB2893-2001),国家规定了四种传递安全信息的安全色:红色表示禁止、危险;黄色表示警告、注意;蓝色表示指令、遵守;绿色表示通行、安全。
安全风险评估
安全风险评估:就是从风险管理角度,运用科学的方法和手段,系统地分析网络与信息系统所面临的威胁及其存在的脆弱性,评估安全事件一旦发生可能造成的危害程度,提出有针对性的抵御威胁的防护对策和整改措施。
风险评估工作贯穿信息系统整个生命周期,包括规划阶段、设计阶段、实施阶段、运行阶段、废弃阶段等。
常用的安全风险评价方法:
1、工作危害分析(JHA);
2、安全检查表分析(SCL);
3、预危险性分析(PHA);
4、危险与可操作性分析(HAZOP);
5、失效模式与影响分析(FMEA);
6、故障树分析(FTA);
7、事件树分析(ETA);
8、作业条件危险性分析(LEC)等方法。
E. 信息安全风险评估分为哪几种
风险评估的方式分为自评估(自查)和检查评估两类。信息安全风险评估以自评估为主,自评估和检查评估相互结合、互为补充。
自评估:是指电脑系统自带的、运营中的、或者单位自行发起的风险评估。
自评估是组织为了定期了解自身安全状态而进行的一种评估活动,在组织信息安全管理中有着重要的作用。为了使组织自我的风险评估工作更具科学性和合理性,有必要在进行评估前确定一个评估实施的流程和方法。
检查评估:是指国家及系统管理部门遵循法律法规对网络安全实施的风险评估。
自评估和检查评估可以以自身技术力量为寄托,也可以向第三方机构寻求技术帮助。
F. 什么手段可以有效应对较大范围的安全事件的不良影响
什么手段可以有效应对较大范围的安全事件的不良影响
答:异地备份
G. 基于隐马尔可夫模型的网络安全态势预测方法
论文:文志诚,陈志刚.基于隐马尔可夫模型的网络安全态势预测方法[J].中南大学学报(自然科学版),2015,46(10):3689-3695.
摘要
为了给网络管理员制定决策和防御措施提供可靠的依据,通过考察网络安全态势变化特点,提出构建隐马 尔可夫预测模型。利用时间序列分析方法刻画不同时刻安全态势的前后依赖关系,当安全态势处于亚状态或偏离 正常状态时,采用安全态势预测机制,分析其变化规律,预测系统的安全态势变化趋势。最后利用仿真数据,对 所提出的网络安全态势预测算法进行验证。访真结果验证了该方法的正确性。
隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,其难点是从可观察的参数中确定该过程的隐含参数。隐马尔可夫模型是关于时序的概率模型,描述由一个隐藏的马尔科夫链随机生成不可观测的状态随机序列,再由各个状态生成一个观测而产生观测随机序列的过程。如果要利用隐马尔可夫模型,模型的状态集合和观测集合应该事先给出。
举个例子:有个孩子叫小明,小明每天早起上学晚上放学。假设小明在学校里的状态有三种,分别是丢钱了,捡钱了,和没丢没捡钱,我们记作{q0,q1,q2}。
那么对于如何确定他的丢钱状态?如果小明丢钱了,那他今天应该心情不好,如果捡钱了,他回来肯定心情好,如果没丢没捡,那他肯定心情平淡。我们将他的心情状态记作{v0,v1v2}。我们这里观测了小明一周的心情状态,心情状态序列是{v0,v0,v1,v1,v2,v0,v1}。那么小明这一周的丢捡钱状态是什么呢?这里引入隐马尔科夫模型。
隐马尔科夫模型的形式定义如下:
一个HMM模型可以由状态转移矩阵A、观测概率矩阵B、以及初始状态概率π确定,因此一个HMM模型可以表示为λ(A,B,π)。
利用隐马尔可夫模型时,通常涉及三个问题,分别是:
后面的计算啥的和马尔科夫差不多我就不写了。。。。。。
2.1网络安全态势
在网络态势方面,国内外相关研究多见于军事战 场的态势获取,网络安全领域的态势获取研究尚处于 起步阶段,还未有普遍认可的解决方法。张海霞等[9] 提出了一种计算综合威胁值的网络安全分级量化方 法。该方法生成的态势值满足越危险的网络实体,威 胁值越高。本文定义网络安全态势由网络基础运行性 (runnability)、网络脆弱性(vulnerability)和网络威胁性 (threat)三维组成,从 3 个不同的维度(或称作分量)以 直观的形式向用户展示整个网络当前安全态势 SA=( runnability, vulnerability, threat)。每个维度可通过 网络安全态势感知,从网络上各运行组件经信息融合 而得到量化分级。为了方便计算实验与降低复杂度, 本文中,安全态势每个维度取“高、中、差”或“1,2, 3”共 3 个等级取值。本文主要进行网络安全态势预测
2.2构建预测模型
隐马尔可夫模型易解决一类对于给定的观测符号序列,预测新的观测符号序列出现概率的基本问题。 隐马尔可夫模型是一个关于可观测变量O与隐藏变量 S 之间关系的随机过程,与安全态势系统的内部状态 (隐状态)及外部状态(可观测状态)相比,具有很大的相 似性,因此,利用隐马尔可夫模型能很好地分析网络 安全态势问题。本文利用隐马尔可夫的时间序列分析 方法刻画不同时刻安全态势的前后依赖关系。
已知 T 时刻网络安全态势,预测 T+1,T+2,⋯, T+n 时刻可能的网络安全态势。以网络安全态势的网络基础运行性(runnability)、网络脆弱性(vulnerability) 和网络威胁性(threat)三维组成隐马尔可夫模型的外在表现特征,即可观测状态或外部状态,它们分别具有 “高、中、差” 或“1, 2,3”取值,则安全态势共有 33=27 种外部组合状态。模型的内部状态(隐状态)为安全态 势 SA的“高、中高、中、中差、差”取值。注意:在本 文中外部特征的 3 个维度,每个维度三等取值,而内部 状态 SA为五等取值。模型示例如图 1 所示。
网络安全态势SA一般以某个概率aij在“高、中高、 中、中差、差”这 5 个状态之间相互转换,从一个状态 向另一个状态迁移,这些状态称为内部状态或隐状态, 外界无法监测到。然而,可以通过监测工具监测到安 全态势外在的表现特征,如网络基础运行性 (runnability)、网络脆弱性(vulnerability)和网络威胁性 (threat)三维。监测到的这些参数值组合一个整体可以 认为是一个可观测状态(外部状态,此观测状态由 L 个 分量构成,是 1 个向量)。图 1 中,设状态 1 为安全态 势“高”状态,状态 5 为安全态势“差”状态。在实际应 用中,根据具体情况可自行设定,本文取安全态势每 维外在表现特征 L=3,则有 27 种安全态势可观测外部 状态,而其内部状态(隐状态)N 共为 5 种。
定义 1: 设网络安全态势 SA内部隐状态可表示为S1,S2,⋯,S5,则网络安全态势将在这 5 个隐状态之 间以某个概率 aij自由转移,其中 0≤aij≤1。
定义 2: 网络安全态势 SA外在表现特征可用 L 个 随机变量 xi(1≤i≤L, 本处 L=3)表示,令 v=(x1, x2,⋯, xL)构成 1 个 L 维随机变量 v;在时刻 I,1 次具体观测 oi的观测值表示为 vi,则经过 T 个时刻对 v 观测得到 1 个安全态势状态观测序列 O={o1,o2,⋯,oT}。
本文基本思路是:建立相应的隐马尔可夫模型, 收集内、外部状态总数训练隐马尔可夫模型;当网络安全态势异常时,通过监测器收集网络外在表现特征数据,利用已训练好 HMM 的模型对网络安全态势进行预测,为管理员提供决策服务。
基本步骤如下:首先,按引理 1 赋 给隐马尔可夫模型 λ=(π,A,B)这 3 个参数的先验值; 其次,按照一定规则随机采集样本训练 HMM 模型直 至收敛,获得 3 个参数的近似值;最后,由一组网络 安全态势样本观测序列预测下一阶段态势。
本实验采集一组 10 个观测样本数据为:
<高、高、 高>,<高、高、高>,<高、中、高>,
<高、中、中>, <中、中、中>,<中、中、中>,
<中、中、高>,<中、 高、高>,<高、高、高>和<高、高、高>。
输入到隐马尔可夫模型中,经解码为安全态势隐状态: “高、高、 中高、中高、中、中、中高、中高、高、高”。最后 1 个隐状态 qT=“高”。由于 a11=0.682 6(上一次为高,下一次为高的状态转移概率),在所有的隐状态 转移概率中为最高,所以,在 T+1 时刻的安全态势 SA 为 qT+1=“高”。网络安全态势预测对比图如图 4 所示, 其中,纵轴表示安全态势等级,“5”表示“高”,“0”表 示“低”;横轴表示时间,在采样序号 10 时,安全态势 为高,经预测下一个时刻 11 时,安全态势应该为高, 可信度达 68.26%。通过本实验,依据训练好的隐马尔 可夫预测模式可方便地预测下一时刻的网络安全态势 发展趋势。从图 4 可明显看出本文的 HMM 方法可信 度比贝叶斯预测方法的高。
H. 简述网络安全的相关评估标准.
1 我国评价标准
1999年10月经过国家质量技术监督局批准发布的《计算机信息系统安全保护等级划分准则》将计算机安全保护划分为以下5个级别。
l 第1级为用户自主保护级(GB1安全级):它的安全保护机制使用户具备自主安全保护的能力,保护用户的信息免受非法的读写破坏。
l 第2级为系统审计保护级(GB2安全级):除具备第一级所有的安全保护功能外,要求创建和维护访问的审计跟踪记录,使所有的用户对自己的行为的合法性负责。
l 第3级为安全标记保护级(GB3安全级):除继承前一个级别的安全功能外,还要求以访问对象标记的安全级别限制访问者的访问权限,实现对访问对象的强制保护。
l 第4级为结构化保护级(GB4安全级):在继承前面安全级别安全功能的基础上,将安全保护机制划分为关键部分和非关键部分,对关键部分直接控制访问者对访问对象的存取,从而加强系统的抗渗透能力。
l 第5级为访问验证保护级(GB5安全级):这一个级别特别增设了访问验证功能,负责仲裁访问者对访问对象的所有访问活动。
我国是国际标准化组织的成员国,信息安全标准化工作在各方面的努力下正在积极开展之中。从20世纪80年代中期开始,自主制定和采用了一批相应的信息安全标准。但是,应该承认,标准的制定需要较为广泛的应用经验和较为深入的研究背景。这两方面的差距,使我国的信息安全标准化工作与国际已有的工作相比,覆盖的范围还不够大,宏观和微观的指导作用也有待进一步提高。
2 国际评价标准
根据美国国防部开发的计算机安全标准——可信任计算机标准评价准则(Trusted Computer Standards Evaluation Criteria,TCSEC),即网络安全橙皮书,一些计算机安全级别被用来评价一个计算机系统的安全性。
自从1985年橙皮书成为美国国防部的标准以来,就一直没有改变过,多年以来一直是评估多用户主机和小型操作系统的主要方法。其他子系统(如数据库和网络)也一直用橙皮书来解释评估。橙皮书把安全的级别从低到高分成4个类别:D类、C类、B类和A类,每类又分几个级别,如表1-1所示。
表 安全 级 别
类 别
级 别
名 称
主 要 特 征
D
D
低级保护
没有安全保护
C
C1
自主安全保护
自主存储控制
C2
受控存储控制
单独的可查性,安全标识
B
B1
标识的安全保护
强制存取控制,安全标识
B2
结构化保护
面向安全的体系结构,较好的抗渗透能力
B3
安全区域
存取监控、高抗渗透能力
A
A
验证设计
形式化的最高级描述和验证
D级是最低的安全级别,拥有这个级别的操作系统就像一个门户大开的房子,任何人都可以自由进出,是完全不可信任的。对于硬件来说,没有任何保护措施,操作系统容易受到损害,没有系统访问限制和数据访问限制,任何人不需任何账户都可以进入系统,不受任何限制可以访问他人的数据文件。属于这个级别的操作系统有DOS和Windows 98等。
C1是C类的一个安全子级。C1又称选择性安全保护(Discretionary Security Protection)系统,它描述了一个典型的用在UNIX系统上安全级别。这种级别的系统对硬件又有某种程度的保护,如用户拥有注册账号和口令,系统通过账号和口令来识别用户是否合法,并决定用户对程序和信息拥有什么样的访问权,但硬件受到损害的可能性仍然存在。
用户拥有的访问权是指对文件和目标的访问权。文件的拥有者和超级用户可以改变文件的访问属性,从而对不同的用户授予不通的访问权限。
C2级除了包含C1级的特征外,应该具有访问控制环境(Controlled Access Environment)权力。该环境具有进一步限制用户执行某些命令或者访问某些文件的权限,而且还加入了身份认证等级。另外,系统对发生的事情加以审计,并写入日志中,如什么时候开机,哪个用户在什么时候从什么地方登录,等等,这样通过查看日志,就可以发现入侵的痕迹,如多次登录失败,也可以大致推测出可能有人想入侵系统。审计除了可以记录下系统管理员执行的活动以外,还加入了身份认证级别,这样就可以知道谁在执行这些命令。审计的缺点在于它需要额外的处理时间和磁盘空间。
使用附加身份验证就可以让一个C2级系统用户在不是超级用户的情况下有权执行系统管理任务。授权分级使系统管理员能够给用户分组,授予他们访问某些程序的权限或访问特定的目录。能够达到C2级别的常见操作系统有如下几种:
(1)UNIX系统;
(2)Novell 3.X或者更高版本;
(3)Windows NT,Windows 2000和Windows 2003。
B级中有三个级别,B1级即标志安全保护(Labeled Security Protection),是支持多级安全(例如:秘密和绝密)的第一个级别,这个级别说明处于强制性访问控制之下的对象,系统不允许文件的拥有者改变其许可权限。
安全级别存在秘密和绝密级别,这种安全级别的计算机系统一般在政府机构中,比如国防部和国家安全局的计算机系统。
B2级,又叫结构保护(Structured Protection)级别,它要求计算机系统中所有的对象都要加上标签,而且给设备(磁盘、磁带和终端)分配单个或者多个安全级别。
B3级,又叫做安全域(Security Domain)级别,使用安装硬件的方式来加强域的安全,例如,内存管理硬件用于保护安全域免遭无授权访问或更改其他安全域的对象。该级别也要求用户通过一条可信任途径连接到系统上。
A级,又称验证设计(Verified Design)级别,是当前橙皮书的最高级别,它包含了一个严格的设计、控制和验证过程。该级别包含较低级别的所有的安全特性。
安全级别设计必须从数学角度上进行验证,而且必须进行秘密通道和可信任分布分析。可信任分布(Trusted Distribution)的含义是:硬件和软件在物理传输过程中已经受到保护,以防止破坏安全系统。橙皮书也存在不足,TCSEC是针对孤立计算机系统,特别是小型机和主机系统。假设有一定的物理保障,该标准适合政府和军队,不适合企业,这个模型是静态的。
I. 如何进行企业网络的安全风险评估
安全风险评估,也称为网络评估、风险评估、网络安全评估、网络安全风险评估,它是指对网络中已知或潜在的安全风险、安全隐患,进行探测、识别、控制、消除的全过程,是企业网络安全管理工作的必备措施之一。
安全风险评估的对象可以是整个网络,也可以是针对网络的某一部分,如网络架构、重要业务系统。通过评估,可以全面梳理网络资产,了解网络存在的安全风险和安全隐患,并有针对性地进行安全加固,从而保障网络的安全运行。
一般情况下,安全风险评估服务,将从IT资产、网络架构、网络脆弱性、数据流、应用系统、终端主机、物理安全、管理安全共8个方面,对网络进行全面的风险评估,并根据评估的实际情况,提供详细的网络安全风险评估报告。
成都优创信安,专业的网络安全服务、网站安全检测、IT外包服务提供商。我们提供了专业的网络安全风险评估服务,详细信息可查看我们网站。
J. 风险评估和态势评估(理解)是一个概念吗,有何异同
风险评估和态势评估,
网络安全态势评估主要是将在对网络上原始安全数据和事件进行采集和预处理操作之后,
基于建立的网络安全态势评估指标体系,在一定先验知识的基础上,通过一系列的数学模型,
稳定风险评估,是指有效规避、预防、控制重大事项实施过程中可能产生的社会稳定风险,为更好的确保重大事项顺利实施。。