⑴ BP人工神经网络方法
(一)方法原理
人工神经网络是由大量的类似人脑神经元的简单处理单元广泛地相互连接而成的复杂的网络系统。理论和实践表明,在信息处理方面,神经网络方法比传统模式识别方法更具有优势。人工神经元是神经网络的基本处理单元,其接收的信息为x1,x2,…,xn,而ωij表示第i个神经元到第j个神经元的连接强度或称权重。神经元的输入是接收信息X=(x1,x2,…,xn)与权重W={ωij}的点积,将输入与设定的某一阈值作比较,再经过某种神经元激活函数f的作用,便得到该神经元的输出Oi。常见的激活函数为Sigmoid型。人工神经元的输入与输出的关系为
地球物理勘探概论
式中:xi为第i个输入元素,即n维输入矢量X的第i个分量;ωi为第i个输入与处理单元间的互联权重;θ为处理单元的内部阈值;y为处理单元的输出。
常用的人工神经网络是BP网络,它由输入层、隐含层和输出层三部分组成。BP算法是一种有监督的模式识别方法,包括学习和识别两部分,其中学习过程又可分为正向传播和反向传播两部分。正向传播开始时,对所有的连接权值置随机数作为初值,选取模式集的任一模式作为输入,转向隐含层处理,并在输出层得到该模式对应的输出值。每一层神经元状态只影响下一层神经元状态。此时,输出值一般与期望值存在较大的误差,需要通过误差反向传递过程,计算模式的各层神经元权值的变化量
(二)BP神经网络计算步骤
(1)初始化连接权值和阈值为一小的随机值,即W(0)=任意值,θ(0)=任意值。
(2)输入一个样本X。
(3)正向传播,计算实际输出,即根据输入样本值、互联权值和阈值,计算样本的实际输出。其中输入层的输出等于输入样本值,隐含层和输出层的输入为
地球物理勘探概论
输出为
地球物理勘探概论
式中:f为阈值逻辑函数,一般取Sigmoid函数,即
地球物理勘探概论
式中:θj表示阈值或偏置;θ0的作用是调节Sigmoid函数的形状。较小的θ0将使Sigmoid函数逼近于阈值逻辑单元的特征,较大的θ0将导致Sigmoid函数变平缓,一般取θ0=1。
(4)计算实际输出与理想输出的误差
地球物理勘探概论
式中:tpk为理想输出;Opk为实际输出;p为样本号;k为输出节点号。
(5)误差反向传播,修改权值
地球物理勘探概论
式中:
地球物理勘探概论
地球物理勘探概论
(6)判断收敛。若误差小于给定值,则结束,否则转向步骤(2)。
(三)塔北雅克拉地区BP神经网络预测实例
以塔北雅克拉地区S4井为已知样本,取氧化还原电位,放射性元素Rn、Th、Tc、U、K和地震反射
S4井位于测区西南部5线25点,是区内唯一已知井。该井在5390.6m的侏罗系地层获得40.6m厚的油气层,在5482m深的震旦系地层中获58m厚的油气层。取S4井周围9个点,即4~6线的23~25 点作为已知油气的训练样本;由于区内没有未见油的钻井,只好根据地质资料分析,选取14~16线的55~57点作为非油气的训练样本。BP网络学习迭代17174次,总误差为0.0001,学习效果相当满意。以学习后的网络进行识别,得出结果如图6-2-4所示。
图6-2-4 塔北雅克拉地区BP神经网络聚类结果
(据刘天佑等,1997)
由图6-2-4可见,由预测值大于0.9可得5个大封闭圈远景区,其中测区南部①号远景区对应着已知油井S4井;②、③号油气远景区位于地震勘探所查明的托库1、2号构造,该两个构造位于沙雅隆起的东段,其西段即为1984年钻遇高产油气流的Sch2井,应是含油气性好的远景区;④、⑤号远景区位于大涝坝构造,是yh油田的组成部分。
⑵ matlab BP神经网络出错 newff参数 隐含层 怎么确定
设[P,T]是训练样本,[X,Y]是测试样本;
net=newrb(P,T,err_goal,spread); %建立网络
q=sim(net,p);
e=q-T;
plot(p,q); %画训练误差曲线
q=sim(net,X);
e=q-Y;
plot(X,q); %画测试误差曲线
训练前馈网络的第一步是建立网络对象。函数newff建立一个可训练的前馈网络。这需要4个输入参数。
第一个参数是一个Rx2的矩阵以定义R个输入向量的最小值和最大值。
第二个参数是一个设定每层神经元个数的数组。
第三个参数是包含每层用到的传递函数名称的细胞数组。
最后一个参数是用到的训练函数的名称。
举个例子,下面命令将创建一个二层网络。它的输入是两个元素的向量,第一层有三个神经元(3),第二层有一个神经元(1)。
第一层的传递函数是tan-sigmoid,输出层的传递函数是linear。
输入向量的第一个元素的范围是-1到2[-1 2],输入向量的第二个元素的范围是0到5[0 5],训练函数是traingd。
net=newff([-1 2; 0 5],[3,1],{'tansig','purelin'},'traingd');
这个命令建立了网络对象并且初始化了网络权重和偏置,因此网络就可以进行训练了。
我们可能要多次重新初始化权重或者进行自定义的初始化。
下面就是初始化的详细步骤。
在训练前馈网络之前,权重和偏置必须被初始化。初始化权重和偏置的工作用命令init来实现。这个函数接收网络对象并初始化权重和偏置后返回网络对象。
下面就是网络如何初始化的:
net = init(net);
我们可以通过设定网络参数net.initFcn和net.layer{i}.initFcn这一技巧来初始化一个给定的网络。
net.initFcn用来决定整个网络的初始化函数。前馈网络的缺省值为initlay,它允许每一层用单独的初始化函数。
设定了net.initFcn ,那么参数net.layer{i}.initFcn 也要设定用来决定每一层的初始化函数。
对前馈网络来说,有两种不同的初始化方式经常被用到:initwb和initnw。initwb函数根据每一层自己的初始化参数(net.inputWeights{i,j}.initFcn)初始化权重矩阵和偏置。前馈网络的初始化权重通常设为rands,它使权重在-1到1之间随机取值。这种方式经常用在转换函数是线性函数时。initnw通常用于转换函数是曲线函数。它根据Nguyen和Widrow[NgWi90]为层产生初始权重和偏置值,使得每层神经元的活动区域能大致平坦的分布在输入空间。
⑶ 如何创建两个隐藏层的BP神经网络
我自己的总结是:
1,隐层的神经网络算法1.1构造方法选择
首先使用三个隐藏层的数量来确定三个隐藏层数找到的最小值和最大值的值,然后从最小来验证模型的预测误差,直到它达到最大值。最后,选择模型误差最小隐藏层数。该方法适用于两个隐藏层的网络。
1.2 Delete方法
单隐层网络的非线性映射能力弱,同样的问题,以达到预定的隐层节点之间的映射一些,以增加网络的可调参数,它是适合用于删除法。
1.3黄金分割法
的主要思路:一是在[A,B]寻找理想的隐层节点,从而充分保证逼近能力和泛化能力的网络。为了满足高精度近似,在金色的原则,按照扩大搜寻范围区间,即该区间[B,C] = 0.619 *(钙)+ A)(其中B,范围[B,C]寻找最佳逼近能力更应要求隐层节点数,在实际应用中,人们可以选择。
⑷ BP神经网络中隐含层的神经元数怎么确定
经验公式未必能达到理想效果,这个真的需要一个个尝试。可以先按楼上说的设定,然后再根据结果的误差以及收敛速度来一个个调整。
⑸ BP神经网络怎样确定传输函数和隐层个数。。。。。
BP网络一般都是用三层的,四层及以上的都比较少用;
传输函数的选择,这个怎么说,假设你想预测的结果是几个固定值,如1,0等,满足某个条件输出1,不满足则0的话,首先想到的是hardlim函数,阈值型的,当然也可以考虑其他的;
然后,假如网络是用来表达某种线性关系时,用purelin---线性传输函数;
若是非线性关系的话,用别的非线性传递函数,多层网络时,每层不一定要用相同的传递函数,可以是三种配合,可以使非线性和线性,阈值的传递函数等;
compet---竞争型传递函数;
hardlim---阈值型传递函数;
hardlims---对称阈值型传输函数;
logsig---S型传输函数;
poslin---正线性传输函数;
purelin---线性传输函数;
radbas---径向基传输函数;
satlin---饱和线性传输函数;
satlins---饱和对称线性传输函数;
softmax---柔性最大值传输函数;
tanhsig---双曲正切S型传输函数;
tribas---三角形径向基传输函数;
⑹ matlab建立bp神经网络如何设置两个隐含层呢
题主那个newff里面的10看到没?那个就是设置1个隐含层的神经元个数,要多个隐含层就把10改成[4,10,1]就是第一个隐含层有4个神经元,第二个隐含层10个神经元,最后一层输出层1个神经元。然后你的{TF1 TF2}不用改。这样应该能用了。
然后给你一个newff的各项参数使用的介绍:
⑺ matlabBP神经网络工具箱,可以调整隐含层节点数嘛
Matlab神经网络工具箱几乎包含了现有神经网络的最新成果,神经网络工具箱模型包括感知器、线性网络、BP网络、径向基函数网络、竞争型神经网络、自组织网络和学习向量量化网络、反馈网络BP神经网络具有很强的映射能力,主要用于模式识别分类、函数逼近、函数压缩等。下面通过实例来说明BP网络在函数逼近方面的应用需要逼近的函数是f(x)=1+sin(k*pi/2*x),其中,选择k=2进行仿真,设置隐藏层神经元数目为n,n可以改变,便于后面观察隐藏层节点与函数逼近能力的关系。
⑻ 深入浅出BP神经网络算法的原理
深入浅出BP神经网络算法的原理
相信每位刚接触神经网络的时候都会先碰到BP算法的问题,如何形象快速地理解BP神经网络就是我们学习的高级乐趣了(画外音:乐趣?你在跟我谈乐趣?)
本篇博文就是要简单粗暴地帮助各位童鞋快速入门采取BP算法的神经网络。
BP神经网络是怎样的一种定义?看这句话:一种按“误差逆传播算法训练”的多层前馈网络。
BP的思想就是:利用输出后的误差来估计输出层前一层的误差,再用这层误差来估计更前一层误差,如此获取所有各层误差估计。这里的误差估计可以理解为某种偏导数,我们就是根据这种偏导数来调整各层的连接权值,再用调整后的连接权值重新计算输出误差。直到输出的误差达到符合的要求或者迭代次数溢出设定值。
说来说去,“误差”这个词说的很多嘛,说明这个算法是不是跟误差有很大的关系?
没错,BP的传播对象就是“误差”,传播目的就是得到所有层的估计误差。
它的学习规则是:使用最速下降法,通过反向传播(就是一层一层往前传)不断调整网络的权值和阈值,最后使全局误差系数最小。
它的学习本质就是:对各连接权值的动态调整。
拓扑结构如上图:输入层(input),隐藏层(hide layer),输出层(output)
BP网络的优势就是能学习和储存大量的输入输出的关系,而不用事先指出这种数学关系。那么它是如何学习的?
BP利用处处可导的激活函数来描述该层输入与该层输出的关系,常用S型函数δ来当作激活函数。
我们现在开始有监督的BP神经网络学习算法:
1、正向传播得到输出层误差e
=>输入层输入样本=>各隐藏层=>输出层
2、判断是否反向传播
=>若输出层误差与期望不符=>反向传播
3、误差反向传播
=>误差在各层显示=>修正各层单元的权值,直到误差减少到可接受程度。
算法阐述起来比较简单,接下来通过数学公式来认识BP的真实面目。
假设我们的网络结构是一个含有N个神经元的输入层,含有P个神经元的隐层,含有Q个神经元的输出层。
这些变量分别如下:
认识好以上变量后,开始计算:
一、用(-1,1)内的随机数初始化误差函数,并设定精度ε,最多迭代次数M
二、随机选取第k个输入样本及对应的期望输出
重复以下步骤至误差达到要求:
三、计算隐含层各神经元的输入和输出
四、计算误差函数e对输出层各神经元的偏导数,根据输出层期望输出和实际输出以及输出层输入等参数计算。
五、计算误差函数对隐藏层各神经元的偏导数,根据后一层(这里即输出层)的灵敏度(稍后介绍灵敏度)δo(k),后一层连接权值w,以及该层的输入值等参数计算
六、利用第四步中的偏导数来修正输出层连接权值
七、利用第五步中的偏导数来修正隐藏层连接权值
八、计算全局误差(m个样本,q个类别)
比较具体的计算方法介绍好了,接下来用比较简洁的数学公式来大致地概括这个过程,相信看完上述的详细步骤都会有些了解和领悟。
假设我们的神经网络是这样的,此时有两个隐藏层。
我们先来理解灵敏度是什么?
看下面一个公式:
这个公式是误差对b的一个偏导数,这个b是怎么?它是一个基,灵敏度δ就是误差对基的变化率,也就是导数。
因为?u/?b=1,所以?E/?b=?E/?u=δ,也就是说bias基的灵敏度?E/?b=δ等于误差E对一个节点全部输入u的导数?E/?u。
也可以认为这里的灵敏度等于误差E对该层输入的导数,注意了,这里的输入是上图U级别的输入,即已经完成层与层权值计算后的输入。
每一个隐藏层第l层的灵敏度为:
这里的“?”表示每个元素相乘,不懂的可与上面详细公式对比理解
而输出层的灵敏度计算方法不同,为:
而最后的修正权值为灵敏度乘以该层的输入值,注意了,这里的输入可是未曾乘以权值的输入,即上图的Xi级别。
对于每一个权值(W)ij都有一个特定的学习率ηIj,由算法学习完成。
⑼ bp神经网络隐含层的误差是如何得到的
1、神经网络算法隐含层的选取 1.1 构造法首先运用三种确定隐含层层数的方法得到三个隐含层层数,找到最小值和最大值,然后从最小值开始逐个验证模型预测误差,直到达到最大值。最后选取模型误差最小的那个隐含层层数。该方法适用于双隐含层网络。 1.2 删除法单隐含层网络非线性映射能力较弱,相同问题,为达到预定映射关系,隐层节点要多一些,以增加网络的可调参数,故适合运用删除法。 1.3黄金分割法算法的主要思想:首先在[a,b]内寻找理想的隐含层节点数,这样就充分保证了网络的逼近能力和泛化能力。为满足高精度逼近的要求,再按照黄金分割原理拓展搜索区间,即得到区间[b,c](其中b=0.619*(c-a)+a),在区间[b,c]中搜索最优,则得到逼近能力更强的隐含层节点数,在实际应用根据要求,从中选取其一即可。 BP算法中,权值和阈值是每训练一次,调整一次。逐步试验得到隐层节点数就是先设置一个初始值,然后在这个值的基础上逐渐增加,比较每次网络的预测性能,选择性能最好的对应的节点数作为隐含层神经元节点数。
⑽ matlab 实现BP神经网络 怎样根据隐含层和输入层的权值阈值得到输入到输出的计算公式
训练好的权值、阈值的输出方法是:
输入到隐层权值:
w1=net.iw
隐层阈值:
theta1=net.b
隐层到输出层权值:
w2=net.lw;
输出层阈值:
theta2=net.b
这是我常逛的论坛,你有兴趣的可以看一下。