Ⅰ 为什么神经网络能实现非线性分类
非线性曲线 我们一般用线性分段逼近,而多层神经网络有多个隐层空间 相当于有多个多段折线分割面,当神经网络层数特别多时 分割超平面就相当于一个超曲面 因此可以对非线性的数据分类
Ⅱ 求助神经网络做非线性回归问题
样本变量不需要那么多,因为神经网络的信息存储能力有限,过多的样本会造成一些有用的信息被丢弃。如果样本数量过多,应增加隐层节点数或隐层数目,才能增强学习能力。一、隐层数一般认为,增加隐层数可以降低网络误差(也有文献认为不一定能有效降低),提高精度,但也使网络复杂化,从而增加了网络的训练时间和出现“过拟合”的倾向。一般来讲应设计神经网络应优先考虑3层网络(即有1个隐层)。一般地,靠增加隐层节点数来获得较低的误差,其训练效果要比增加隐层数更容易实现。对于没有隐层的神经网络模型,实际上就是一个线性或非线性(取决于输出层采用线性或非线性转换函数型式)回归模型。因此,一般认为,应将不含隐层的网络模型归入回归分析中,技术已很成熟,没有必要在神经网络理论中再讨论之。二、隐层节点数在BP 网络中,隐层节点数的选择非常重要,它不仅对建立的神经网络模型的性能影响很大,而且是训练时出现“过拟合”的直接原因,但是目前理论上还没有一种科学的和普遍的确定方法。 目前多数文献中提出的确定隐层节点数的计算公式都是针对训练样本任意多的情况,而且多数是针对最不利的情况,一般工程实践中很难满足,不宜采用。事实上,各种计算公式得到的隐层节点数有时相差几倍甚至上百倍。为尽可能避免训练时出现“过拟合”现象,保证足够高的网络性能和泛化能力,确定隐层节点数的最基本原则是:在满足精度要求的前提下取尽可能紧凑的结构,即取尽可能少的隐层节点数。研究表明,隐层节点数不仅与输入/输出层的节点数有关,更与需解决的问题的复杂程度和转换函数的型式以及样本数据的特性等因素有关。
Ⅲ 神经网络中ReLU是线性还是非线性函数如果是线性的话为什么还说它做激活函数比较好
1、严格来说的话 ReLU算是分段线性函数。中间隐层激活函数采用线性函数(例如恒等变换)不好是因为,最后算下来多层网络跟单层网络一个效果。其实 激活函数的存在是为了神经网络更好的拟合目标函数而已。
2、ReLU比sigmoid和tanh好是因为它的收敛速度快(sigmoid、tanh函数在自变量比较大的时候 导数很小,采用梯度下降法 变化缓慢,特别是多层网络 就更慢了),计算量比较小(只需要一个阈值进行比较 而不需要做函数运算)。
Ⅳ 神经网络的非线性预测是啥意思
exp{x}=e的x次方,例如,exp{2}=e的平方,它是一个数学符号,不这样写也可以的
Ⅳ 关于神经网络非线性能力的问题
这句话你可以直接用,不用加引用。因为这句话是很容易验证的。
在网络层数、隐含层节点数逐渐增加,训练次数增加之后,他的拟合能力也是不断增加的,所以说,他可以以任意精度逼近任何非线性连续函数。
当然,如果你是想找这方面的参考文献,那最好的教材应该是网络文库的各种ppt,然后是神经网络的书本,要花点功夫筛选阅读。
Ⅵ 神经网络具有非线性处理功能吗为什么
神经网络具有极强的非线性映射能力,按照一定的智能算法通过相当数量的训练找出模式与类别之间的内在联系。因此, 以故障特征向量为神经网络的输入, 以故障标识为输出,通过一定量的样本学习训练, 将诊断知识储存于网络的拓扑结构和连接权值之中, 从而形成从故障征兆到故障识别的非线性映射。
Ⅶ 人工神经网络的基本特征
人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。人工神经网络具有四个基本特征:
(1)非线性 非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。
(2)非局限性 一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。
(3)非常定性 人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。
(4)非凸性 一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。
人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。人工神经网络是一种非程序化、适应性、大脑风格的信息处理 ,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。它是涉及神经科学、思维科学、人工智能、计算机科学等多个领域的交叉学科。
人工神经网络是并行分布式系统,采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结构化信息方面的缺陷,具有自适应、自组织和实时学习的特点。
Ⅷ 神经网络的激活函数都采用非线性函数,如阈值型或S型,为何不采用线性激活函数
非线性激活函数可以拓展神经网络的表达能力。如果用线性激活函数,多层的神经网络和单层的就没有区别,只能表达线性逻辑。