⑴ 万能公式是什么
【词语】:
万能公式
【释义】:应用公式sinα=[2tan(α/2)]/{1+[tan(α/2)]^2}
cosα=[1-tan(α/2)^2]/{1+[tan(α/2)]^2}
tana=[2tan(a/2)]/{1-[tan(a/2)]^2}
将sinα、cosα、tgα代换成tg(α/2)的式子,这种代换称为万能置换。
【推导】:sina=2sin(a/2)cos(a/2)
=[2sin(a/2)cos(a/2)]/[sin(a/2)^2+cos(a/2)^2]
=[2tan(a/2)]/[1+(tanα/2)^2]
cosa与tana同理
⑵ 万能公式为啥叫万能公式
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
任何三角函数的多项式都可以用万能公式代换成只含有tanα的一元多项式,所以叫万能公式
⑶ 万能公式是什么,高几学的,主要内容是什么啊
高一。其实就事引力公式的变形,在理想天体前提下,物体在天体表面的重力大小等于天体对物体的万有引力大小。设天体表面一个物体质量为m,天体质量为M,g为天体表面的重力加速度,R为天体半径。
GMm/(R^2)=mg
消去等式两边的m得到:
GM=gR^2
该式称为“黄金代换”(或“黄金代换公式”)。其中G为万有引力常量,R为中心天体半径,M为中心天体质量,g为中心天体表面的重力加速度。
⑷ 万能公式是如何推导的
【释义】:应用公式sinα=[2tan(α/2)]/{1+[tan(α/2)]^2}
cosα=[1-tan(α/2)^2]/{1+[tan(α/2)]^2}
tanα=[2tan(α/2)]/{1-[tan(α/2)]^2}
将sinα、cosα、tanα代换成tan(α/2)的式子,这种代换称为万能置换.
【推导】:(字符版)
sinα=2sin(α/2)cos(α/2)=[2sin(α/2)cos(α/2)]/[sin(α/2)^2+cos(α/2)^2]=[2tan(α/2)]/[1+(tanα/2)^2] cosα=[cos(α/2)^2-sin(α/2)^2]=[cos(α/2)^2-sin(α/2)^2]/[sin(a/2)^2+cos(a/2)^2]=[1-tan(α/2)^2]/[1+(tanα/2)^2] tanα=tan[2*(α/2)]=2tan(α/2)/[1-tan(α/2)^2]
⑸ 万能代换公式是什么
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα。
cos(2kπ+α)= cosα。
tan(2kπ+α)= tanα。
cot(2kπ+α)= cotα。
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα。
cos(π+α)= -cosα。
tan(π+α)= tanα。
cot(π+α)= cotα。
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)= -sinα。
cos(-α)= cosα。
tan(-α)= -tanα。
cot(-α)= -cotα。
积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
⑹ 万能公式是什么
sinα=[2tan(α/2)]/{1+[tan(α/2)]^2}
cosα=[1-tan(α/2)^2]/{1+[tan(α/2)]^2}
tanα=[2tan(α/2)]/{1-[tan(α/2)]^2}
将sinα、cosα、tanα代换成tan(α/2)的式子,这种代换称为万能置换。
⑺ 万能公式
sinα=[2tan(α/2)]/{1+[tan(α/2)]^2}
cosα=[1-tan(α/2)^2]/{1+[tan(α/2)]^2}
tanα=[2tan(α/2)]/{1-[tan(α/2)]^2}
将sinα、cosα、tanα代换成tan(α/2)的式子,
这种代换称为万能置换。
⑻ 万能公式是如何推导的
由余弦定理:a^2+b^2-c^2-2abcosC=0
正弦定理:a/sinA=b/sinB=c/sinC=2R
得 (sinA)^2+(sinB)^2-(sinC)^2-2sinAsinBcosC=0
转化 1-(cosA)^2+1-(cosB)^2-[1-(cosC)^2]-2sinAsinBcosC=0
即 (cosA)^2+(cosB)^2-(cosC)^2+2sinAsinBcosC-1=0
又 cos(C)=-cos(A+B)=sinAsinB-cosAcosB
得 (cosA)^2+(cosB)^2-(cosC)^2+2cosC[cos(C)+cosAcosB]-1=0
(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
(8)双代会网络万能公式是什么扩展阅读:
设tan(A/2)=t
sinA=2t/(1+t^2) (A≠2kπ+π,k∈Z)
tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z)
cosA=(1-t^2)/(1+t^2) (A≠2kπ+π k∈Z)
就是说sinA.tanA.cosA都可以用tan(A/2)来表示;当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了。