A. 神经网络结构搜索(Neural Architecture search)
神经网络搜索是生成和优化网络结构的有效工具 Neural Architecture Search 。
在不确定网络的长度和结构的情况下,使用一个循环神经网络(recurrent network)作为控制器来生成网络结构的字段,用来构建子神经网络。将训练子网络之后的准确率作为控制器回馈信号(reward signal),通过计算策略梯度(policy gradient)更新控制器,这样不断的迭代循环。在下一次迭代中,控制器将有更高的概率提出一个高准确率的网络结构。总之,伴随着时间的推移,控制器将通过不断的学习来提高搜索结果。如下图所示就是网络结构搜索。
神经结构搜索中,我们使用控制器产生神经网络的超参数。控制器使用的是一个循环神经网络。假设我们希望预测只有卷积层的前馈神经网络,就可以使用控制器来生成这些超参数的序列。
控制器可以看到代理(agent),生成的超参数序列(网络结构的描述字符串)可以被看做代理一系列的动作(actions) 。子网络在收敛后将达到准确率 。随后,将 作为回馈信号并使用增强学习训练控制器。具体的说,为了优化的结构,需要让控制器最大化期望回馈,期望回馈可以表示为 :
由于 不可微分,因此不能使用传统的BP算法。我们需要使用回馈更新代理的策略参数 ,进而实现回馈的最优化。这里我们使用 Williams 提出的REINFORCE,这个公式关联了回馈 和策略参数 :
上述数值的可以近似表示为:
是控制器一个批样本网络模型的数量, 是控制器生成的网络结构的超参数数量。 是第 个神经网络模型的准确率。
上述更新的梯度是梯度的无偏估计,但是方差很大。为了减小方差,我们使用了一个基线函数: 。
只要 不依赖与当前的动作,这个梯度导数将始终是无偏估计。这里,我们的 是准确率的指数移动平均值 EMA 。
在神经网络搜索中,训练一个子网络可能需要几个小时的时间。使用分布式训练和并行参数更新可以加速控制器的学习过程。我们使用参数服务器保存所有参数,服务器将参数分发给控制器,控制器被分成 个,每一个控制器使用得到的参数进行模型的构建,由于得到的参数可能不同,构建模型的策略也是随机的,导致每次构建的网络结构也会不同。每个控制器会构建一个batch, 个子网络,然后并行训练子网络得到准确率。计算出参数的梯度。然后计算完梯度的控制器将梯度传递到参数服务器,分别对自己负责的参数进行更新。接下来控制器得到更新的参数开始构建新的神经网络模型。这里,每一个控制器独立的发送自己的梯度更新服务器参数,不需要控制器之间同步,这及时异步更新。这里子网络的训练次数固定(epochs)。这种并行架构如下图所示
为了让控制器产生跳跃连接。在第 层中,添加一个锚点(anchor point)表示是否和前面的网络层连接:
表示控制器第 层网络锚点的隐藏状态, 介于0到 之间。根据这些sigmoids的结果来决定哪些网络层被用作当前层的输入。 , 和 是可训练参数。[图片上传失败...(image-feb8fe-1558488967580)]
为了产生循环元胞。控制器需要找到一个公式,以 和 作为输入, 作为结果。最简单的方式 ,这是一个基本的循环细胞的公式。一个更复杂的公式是广泛应用的LSTM循环元胞。
基础RNN和LSTM都可以描述为一个树形结构,输入 和 ,产生 ,这些变量作为叶子。控制器RNN需要标明树上的每个节点的结合方法(相加,按元素相乘等)和激活函数,用于融合两个输入并产生一个输出。然后两个节点输出又被作为树上下一个节点的输入。为了控制器可以选择这些方法和函数,我们将树上的节点以一定的顺序编号,这样控制器可以顺序的预测。
B. 第五章 神经网络
神经网络 :神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。
神经网络中最基本的成分便是 神经元模型 。
M-P神经元模型:
感知机由两层神经元组成,分别为输入层、输出层。
以下是具体过程:
多层神经网络的拓扑结构如图:
如上图可知,多层网络由输入层、隐含层和输出层组成,顶层是输出层,底层是输入层,中间的便是隐含层。隐含层与输出层都具有功能神经元。
多层前馈神经网络的结构需要满足:
1、每层神经元必须与下一层完全互连
2、神经元之间不存在同层连接
3、神经元不可跨层连接
只需包含一个足够多神经元的隐层,就能以任意精度逼近任意复杂度的连续函数
BP神经网络由于学习能力太强大比较荣誉造成过拟合问题,故有两种策略来减缓过拟合的问题:
1、早停:将数据分成训练集和验证集,训练集学习,验证集评估性能,在训练过程中,若训练集的累积误差降低,而验证集的累积误差提高,则终止训练;
2、引入正则化:其基本思想是在误差目标函数中增加一个用于描述网络复杂程度的部分,有如连接权和阈值的平方和:
其中λ∈(0,1)用于对累积经验误差与网络复杂度这两项进行折中,常通过交叉验证法来估计。
神经网络的训练过程可看作一个参数寻优的过程,即寻找到适当的参数使得E最小。于是我们时常会谈及“全局最小”和“局部最小”。
1、全局最小:即全局最小解,在参数空间中,所有其他点的误差函数值均大于该点;
2、局部最小:即局部最小解,在参数空间中,其邻近的点的误差函数值均大于该点。
我们要达到局部极小点,很容易,只要满足梯度为零的点便是了,局部极小点可以有多个,但全局最小点只有一个。显然,我们追求的是全局最小,而非局部极小,于是人们通常采用以下策略来试图“跳出”局部极小,使其接近全局最小:
1、以多组不同参数值初始化多个神经网络,按标准方法训练,在迭代停止后,取其中误差最小的解作为最终参数;
2、使用随机梯度下降(在计算梯度时加入了随机因素),使得在局部最小时,计算的梯度仍可能不为0,从而可能跳出局部极小,继续进行迭代;
3、“模拟退火”技术,在每一步都以一定的概率接受比当前解更差的结果,但接受“次优解”的概率要随着迭代进行,时间推移而逐渐减低以确保算法的稳定。
1、RBF网络
单隐层前馈神经网络 ,使用径向基函数作为隐层神经元激活函数,输出层是对隐层神经元输出的线性组合。RBF网络可表示为:
2、ART网络
竞争型学习 (神经网络中一种常用的 无监督学习 策略),由 比较层、识别层、识别阈值和重置模块 组成。接收到比较层的输入信号后,识别层神经元相互竞争以产生获胜神经元,最简单的方式就是计算输入向量与每个识别层神经元所对应的模式类代表向量间的距离,距离小者获胜。若获胜神经元对应的代表向量与输入向量间 相似度大于识别阈值 ,则将输入样本归为该代表向量所属类别,网络 连接权 也会进行 更新 以保证后面接收到相似的输入样本时该模式类会计算出更大的相似度,使得这样的样本能够归于一类;如果 相似度不大于识别阈值 ,则 重置模块 会在 识别层 加一个神经元,其 代表向量 就 设置 为当前 输入向量 。
3、SOM网络
竞争型学习的无监督神经网络 ,将高维输入数据映射到低维空间(通常是二维),且保持输入数据在高维空间的拓扑结构。
4、级联相关网络
结构自适应网络 。
5、Elman网络
递归神经网络 。
6、Boltzmann机
基于能量的模型,其神经元分为显层与隐层,显层用于数据输入输出,隐层被理解为数据的内在表达。其神经元皆为布尔型,1为激活,0为抑制。
理论上,参数越多的模型其复杂程度越高,能完成更加复杂的学习任务。但是复杂模型的训练效率低下,容易过拟合。但由于大数据时代、云计算,计算能力大幅提升缓解了训练效率低下,而训练数据的增加则可以降低过拟合风险。
于是如何增加模型的复杂程度呢?
1、增加隐层数;
2、增加隐层神经元数.
如何有效训练多隐层神经网络?
1、无监督逐层训练:每次训练一层隐节点,把上一层隐节点的输出当作输入来训练,本层隐结点训练好后,输出再作为下一层的输入来训练,这称为预训练,全部预训练完成后,再对整个网络进行微调。“预训练+微调”即把大量的参数进行分组,先找出每组较好的设置,再基于这些局部最优的结果来训练全局最优;
2、权共享:令同一层神经元使用完全相同的连接权,典型的例子是卷积神经网络。这样做可以大大减少需要训练的参数数目。
深度学习 可理解为一种特征学习或者表示学习,是通过 多层处理 ,逐渐将初始的 低层特征表示 转化为 高层特征表示 后,用 简单模型 即可完成复杂的分类等 学习任务 。
C. 卷积神经网络的结构、尺寸
(摘录源于: CS231n课程笔记 )
最常见的形式就是将一些卷积层和ReLU层放在一起,其后紧跟池化层,然后重复如此直到图像在空间上被缩小到一个足够小的尺寸,在某个地方过渡成全连接层也较为常见。最后的全连接层得到输出,比如分类评分等。
换句话说,最常见的卷积神经网络结构如下:
INPUT -> [[CONV -> RELU]*N -> POOL?]*M -> [FC -> RELU]*K -> FC
其中*指的是重复次数,POOL?指的是一个可选的汇聚层。其中N >=0,通常N<=3,M>=0,K>=0,通常K<3。例如,下面是一些常见的网络结构规律:
输入层(包含图像的)应该能被2整除很多次。常用数字包括32(比如CIFAR-10),64,96(比如STL-10)或224(比如ImageNet卷积神经网络),384和512。
最常用的设置是用用2x2感受野,步长为1。
———·———·———·———·———·———·———·———·———·———·——
(以下)直接全复制,供查阅参考。
———·———·———·———·———·———·———·———·———·———·——
下面是卷积神经网络领域中比较有名的几种结构:
VGGNet的细节: 我们进一步对 VGGNet 的细节进行分析学习。整个VGGNet中的卷积层都是以步长为1进行3x3的卷积,使用了1的零填充,汇聚层都是以步长为2进行了2x2的最大值汇聚。可以写出处理过程中每一步数据体尺寸的变化,然后对数据尺寸和整体权重的数量进行查看:
注意,大部分的内存和计算时间都被前面的卷积层占用,大部分的参数都用在后面的全连接层,这在卷积神经网络中是比较常见的。在这个例子中,全部参数有140M,但第一个全连接层就包含了100M的参数。
一旦对于所有这些数值的数量有了一个大略估计(包含激活数据,梯度和各种杂项),数量应该转化为以GB为计量单位。把这个值乘以4,得到原始的字节数(因为每个浮点数占用4个字节,如果是双精度浮点数那就是占用8个字节),然后多次除以1024分别得到占用内存的KB,MB,最后是GB计量。如果你的网络工作得不好,一个常用的方法是降低批尺寸(batch size),因为绝大多数的内存都是被激活数据消耗掉了。
D. Matlab神经网络实现后的这个图怎么分析那些英文单词都代表着什么thx!
这是一个神经网络的一般性结构图
绿色
Input:
输入端
output:
输出端
蓝色
Hidden:
隐含层
Output:
输出层
w:
权值
b:
偏置(bias)
E. bp神经网络模型示意图,从哪找
你什么意思啊?不怎么理解你的意思?你的意思是matlab 里面的神经网络工具箱怎么用么?
F. 请问谁知道vs中如何查看这样的类结构视图,还是用其他软件打开的
点击“类视图”右上角那个倒置小三角形“▼”,选择“自动隐藏”,它就会隐藏在侧边的咯!附图:
G. 利用Python实现卷积神经网络的可视化
在本文中,将探讨如何可视化卷积神经网络(CNN),该网络在计算机视觉中使用最为广泛。首先了解CNN模型可视化的重要性,其次介绍可视化的几种方法,同时以一个用例帮助读者更好地理解模型可视化这一概念。
正如上文中介绍的癌症肿瘤诊断案例所看到的,研究人员需要对所设计模型的工作原理及其功能掌握清楚,这点至关重要。一般而言,一名深度学习研究者应该记住以下几点:
1.1 理解模型是如何工作的
1.2 调整模型的参数
1.3 找出模型失败的原因
1.4 向消费者/终端用户或业务主管解释模型做出的决定
2.可视化CNN模型的方法
根据其内部的工作原理,大体上可以将CNN可视化方法分为以下三类:
初步方法:一种显示训练模型整体结构的简单方法
基于激活的方法:对单个或一组神经元的激活状态进行破译以了解其工作过程
基于梯度的方法:在训练过程中操作前向传播和后向传播形成的梯度
下面将具体介绍以上三种方法,所举例子是使用Keras深度学习库实现,另外本文使用的数据集是由“识别数字”竞赛提供。因此,读者想复现文中案例时,请确保安装好Kears以及执行了这些步骤。
研究者能做的最简单的事情就是绘制出模型结构图,此外还可以标注神经网络中每层的形状及参数。在keras中,可以使用如下命令完成模型结构图的绘制:
model.summary()_________________________________________________________________Layer (type) Output Shape Param #
=================================================================conv2d_1 (Conv2D) (None, 26, 26, 32) 320_________________________________________________________________conv2d_2 (Conv2D) (None, 24, 24, 64) 18496_________________________________________________________________max_pooling2d_1 (MaxPooling2 (None, 12, 12, 64) 0_________________________________________________________________dropout_1 (Dropout) (None, 12, 12, 64) 0_________________________________________________________________flatten_1 (Flatten) (None, 9216) 0_________________________________________________________________dense_1 (Dense) (None, 128) 1179776_________________________________________________________________dropout_2 (Dropout) (None, 128) 0_________________________________________________________________preds (Dense) (None, 10) 1290
=================================================================Total params: 1,199,882Trainable params: 1,199,882Non-trainable params: 0
还可以用一个更富有创造力和表现力的方式呈现模型结构框图,可以使用keras.utils.vis_utils函数完成模型体系结构图的绘制。
另一种方法是绘制训练模型的过滤器,这样就可以了解这些过滤器的表现形式。例如,第一层的第一个过滤器看起来像:
top_layer = model.layers[0]plt.imshow(top_layer.get_weights()[0][:, :, :, 0].squeeze(), cmap='gray')
一般来说,神经网络的底层主要是作为边缘检测器,当层数变深时,过滤器能够捕捉更加抽象的概念,比如人脸等。
为了理解神经网络的工作过程,可以在输入图像上应用过滤器,然后绘制其卷积后的输出,这使得我们能够理解一个过滤器其特定的激活模式是什么。比如,下图是一个人脸过滤器,当输入图像是人脸图像时候,它就会被激活。
from vis.visualization import visualize_activation
from vis.utils import utils
from keras import activations
from matplotlib import pyplot as plt
%matplotlib inline
plt.rcParams['figure.figsize'] = (18, 6)
# Utility to search for layer index by name.
# Alternatively we can specify this as -1 since it corresponds to the last layer.
layer_idx = utils.find_layer_idx(model, 'preds')
# Swap softmax with linear
model.layers[layer_idx].activation = activations.linear
model = utils.apply_modifications(model)
# This is the output node we want to maximize.filter_idx = 0
img = visualize_activation(model, layer_idx, filter_indices=filter_idx)
plt.imshow(img[..., 0])
同理,可以将这个想法应用于所有的类别,并检查它们的模式会是什么样子。
for output_idx in np.arange(10):
# Lets turn off verbose output this time to avoid clutter and just see the output.
img = visualize_activation(model, layer_idx, filter_indices=output_idx, input_range=(0., 1.))
plt.figure()
plt.title('Networks perception of {}'.format(output_idx))
plt.imshow(img[..., 0])
在图像分类问题中,可能会遇到目标物体被遮挡,有时候只有物体的一小部分可见的情况。基于图像遮挡的方法是通过一个灰色正方形系统地输入图像的不同部分并监视分类器的输出。这些例子清楚地表明模型在场景中定位对象时,若对象被遮挡,其分类正确的概率显着降低。
为了理解这一概念,可以从数据集中随机抽取图像,并尝试绘制该图的热图(heatmap)。这使得我们直观地了解图像的哪些部分对于该模型而言的重要性,以便对实际类别进行明确的区分。
def iter_occlusion(image, size=8):
# taken from https://www.kaggle.com/blargl/simple-occlusion-and-saliency-maps
occlusion = np.full((size * 5, size * 5, 1), [0.5], np.float32)
occlusion_center = np.full((size, size, 1), [0.5], np.float32)
occlusion_padding = size * 2
# print('padding...')
image_padded = np.pad(image, ( \ (occlusion_padding, occlusion_padding), (occlusion_padding, occlusion_padding), (0, 0) \ ), 'constant', constant_values = 0.0)
for y in range(occlusion_padding, image.shape[0] + occlusion_padding, size):
for x in range(occlusion_padding, image.shape[1] + occlusion_padding, size):
tmp = image_padded.()
tmp[y - occlusion_padding:y + occlusion_center.shape[0] + occlusion_padding, \
x - occlusion_padding:x + occlusion_center.shape[1] + occlusion_padding] \ = occlusion
tmp[y:y + occlusion_center.shape[0], x:x + occlusion_center.shape[1]] = occlusion_center yield x - occlusion_padding, y - occlusion_padding, \
tmp[occlusion_padding:tmp.shape[0] - occlusion_padding, occlusion_padding:tmp.shape[1] - occlusion_padding]i = 23 # for exampledata = val_x[i]correct_class = np.argmax(val_y[i])
# input tensor for model.predictinp = data.reshape(1, 28, 28, 1)# image data for matplotlib's imshowimg = data.reshape(28, 28)
# occlusionimg_size = img.shape[0]
occlusion_size = 4print('occluding...')heatmap = np.zeros((img_size, img_size), np.float32)class_pixels = np.zeros((img_size, img_size), np.int16)
from collections import defaultdict
counters = defaultdict(int)for n, (x, y, img_float) in enumerate(iter_occlusion(data, size=occlusion_size)):
X = img_float.reshape(1, 28, 28, 1)
out = model.predict(X)
#print('#{}: {} @ {} (correct class: {})'.format(n, np.argmax(out), np.amax(out), out[0][correct_class]))
#print('x {} - {} | y {} - {}'.format(x, x + occlusion_size, y, y + occlusion_size))
heatmap[y:y + occlusion_size, x:x + occlusion_size] = out[0][correct_class]
class_pixels[y:y + occlusion_size, x:x + occlusion_size] = np.argmax(out)
counters[np.argmax(out)] += 1
正如之前的坦克案例中看到的那样,怎么才能知道模型侧重于哪部分的预测呢?为此,可以使用显着图解决这个问题。显着图首先在这篇文章中被介绍。
使用显着图的概念相当直接——计算输出类别相对于输入图像的梯度。这应该告诉我们输出类别值对于输入图像像素中的微小变化是怎样变化的。梯度中的所有正值告诉我们,像素的一个小变化会增加输出值。因此,将这些梯度可视化可以提供一些直观的信息,这种方法突出了对输出贡献最大的显着图像区域。
class_idx = 0indices = np.where(val_y[:, class_idx] == 1.)[0]
# pick some random input from here.idx = indices[0]
# Lets sanity check the picked image.from matplotlib import pyplot as plt%matplotlib inline
plt.rcParams['figure.figsize'] = (18, 6)plt.imshow(val_x[idx][..., 0])
from vis.visualization import visualize_saliency
from vis.utils import utilsfrom keras import activations# Utility to search for layer index by name.
# Alternatively we can specify this as -1 since it corresponds to the last layer.
layer_idx = utils.find_layer_idx(model, 'preds')
# Swap softmax with linearmodel.layers[layer_idx].activation = activations.linear
model = utils.apply_modifications(model)grads = visualize_saliency(model, layer_idx, filter_indices=class_idx, seed_input=val_x[idx])
# Plot with 'jet' colormap to visualize as a heatmap.plt.imshow(grads, cmap='jet')
# This corresponds to the Dense linear layer.for class_idx in np.arange(10):
indices = np.where(val_y[:, class_idx] == 1.)[0]
idx = indices[0]
f, ax = plt.subplots(1, 4)
ax[0].imshow(val_x[idx][..., 0])
for i, modifier in enumerate([None, 'guided', 'relu']):
grads = visualize_saliency(model, layer_idx, filter_indices=class_idx,
seed_input=val_x[idx], backprop_modifier=modifier)
if modifier is None:
modifier = 'vanilla'
ax[i+1].set_title(modifier)
ax[i+1].imshow(grads, cmap='jet')
类别激活映射(CAM)或grad-CAM是另外一种可视化模型的方法,这种方法使用的不是梯度的输出值,而是使用倒数第二个卷积层的输出,这样做是为了利用存储在倒数第二层的空间信息。
from vis.visualization import visualize_cam
# This corresponds to the Dense linear layer.for class_idx in np.arange(10):
indices = np.where(val_y[:, class_idx] == 1.)[0]
idx = indices[0]f, ax = plt.subplots(1, 4)
ax[0].imshow(val_x[idx][..., 0])
for i, modifier in enumerate([None, 'guided', 'relu']):
grads = visualize_cam(model, layer_idx, filter_indices=class_idx,
seed_input=val_x[idx], backprop_modifier=modifier)
if modifier is None:
modifier = 'vanilla'
ax[i+1].set_title(modifier)
ax[i+1].imshow(grads, cmap='jet')
本文简单说明了CNN模型可视化的重要性,以及介绍了一些可视化CNN网络模型的方法,希望对读者有所帮助,使其能够在后续深度学习应用中构建更好的模型。 免费视频教程:www.mlxs.top
H. 如何查看matlab训练后的神经网络结构
如果是bp网络的话,有两个传递函数,表示是
1、输入层到隐含层的传递函数
2、隐含层到输出层的传递函数
这样看:
net.layers{1}.transferfcn
net.layers{2}.transferfcn
给满分把!
I. 如何查看matlab训练生成的神经网络的结构和参数。
语句view (net)便可以查看建立的当前神经结构
J. 如何画出神经网络的结构图
回复 wpanys 的帖子感谢您的回复~~确实如你所说,用各种绘图软件都可以画~~最后我选择matlab画出动态结构~嘿嘿