导航:首页 > 网络问题 > 如何创建人工神经网络模型

如何创建人工神经网络模型

发布时间:2023-01-25 07:13:22

① 人工神经网络综述

文章主要分为:
一、人工神经网络的概念;
二、人工神经网络的发展历史;
三、人工神经网络的特点;
四、人工神经网络的结构。
。。

人工神经网络(Artificial Neural Network,ANN)简称神经网络(NN),是基于生物学中神经网络的基本原理,在理解和抽象了人脑结构和外界刺激响应机制后,以网络拓扑知识为理论基础,模拟人脑的神经系统对复杂信息的处理机制的一种数学模型。该模型以并行分布的处理能力、高容错性、智能化和自学习等能力为特征,将信息的加工和存储结合在一起,以其独特的知识表示方式和智能化的自适应学习能力,引起各学科领域的关注。它实际上是一个有大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统。

神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激活函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),神经网络就是通过这种方式来模拟人类的记忆。网络的输出则取决于网络的结构、网络的连接方式、权重和激活函数。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。神经网络的构筑理念是受到生物的神经网络运作启发而产生的。人工神经网络则是把对生物神经网络的认识与数学统计模型相结合,借助数学统计工具来实现。另一方面在人工智能学的人工感知领域,我们通过数学统计学的方法,使神经网络能够具备类似于人的决定能力和简单的判断能力,这种方法是对传统逻辑学演算的进一步延伸。

人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。人工神经网络是一种非程序化、适应性、大脑风格的信息处理,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。

神经网络,是一种应用类似于大脑神经突触连接结构进行信息处理的数学模型,它是在人类对自身大脑组织结合和思维机制的认识理解基础之上模拟出来的,它是根植于神经科学、数学、思维科学、人工智能、统计学、物理学、计算机科学以及工程科学的一门技术。

在介绍神经网络的发展历史之前,首先介绍一下神经网络的概念。神经网络主要是指一种仿造人脑设计的简化的计算模型,这种模型中包含了大量的用于计算的神经元,这些神经元之间会通过一些带有权重的连边以一种层次化的方式组织在一起。每一层的神经元之间可以进行大规模的并行计算,层与层之间进行消息的传递。

下图展示了整个神经网络的发展历程:

神经网络的发展有悠久的历史。其发展过程大致可以概括为如下4个阶段。

(1)、M-P神经网络模型:20世纪40年代,人们就开始了对神经网络的研究。1943 年,美国心理学家麦克洛奇(Mcculloch)和数学家皮兹(Pitts)提出了M-P模型,此模型比较简单,但是意义重大。在模型中,通过把神经元看作个功能逻辑器件来实现算法,从此开创了神经网络模型的理论研究。
(2)、Hebb规则:1949 年,心理学家赫布(Hebb)出版了《The Organization of Behavior》(行为组织学),他在书中提出了突触连接强度可变的假设。这个假设认为学习过程最终发生在神经元之间的突触部位,突触的连接强度随之突触前后神经元的活动而变化。这一假设发展成为后来神经网络中非常着名的Hebb规则。这一法则告诉人们,神经元之间突触的联系强度是可变的,这种可变性是学习和记忆的基础。Hebb法则为构造有学习功能的神经网络模型奠定了基础。
(3)、感知器模型:1957 年,罗森勃拉特(Rosenblatt)以M-P 模型为基础,提出了感知器(Perceptron)模型。感知器模型具有现代神经网络的基本原则,并且它的结构非常符合神经生理学。这是一个具有连续可调权值矢量的MP神经网络模型,经过训练可以达到对一定的输入矢量模式进行分类和识别的目的,它虽然比较简单,却是第一个真正意义上的神经网络。Rosenblatt 证明了两层感知器能够对输入进行分类,他还提出了带隐层处理元件的三层感知器这一重要的研究方向。Rosenblatt 的神经网络模型包含了一些现代神经计算机的基本原理,从而形成神经网络方法和技术的重大突破。
(4)、ADALINE网络模型: 1959年,美国着名工程师威德罗(B.Widrow)和霍夫(M.Hoff)等人提出了自适应线性元件(Adaptive linear element,简称Adaline)和Widrow-Hoff学习规则(又称最小均方差算法或称δ规则)的神经网络训练方法,并将其应用于实际工程,成为第一个用于解决实际问题的人工神经网络,促进了神经网络的研究应用和发展。ADALINE网络模型是一种连续取值的自适应线性神经元网络模型,可以用于自适应系统。

人工智能的创始人之一Minsky和Papert对以感知器为代表的网络系统的功能及局限性从数学上做了深入研究,于1969年发表了轰动一时《Perceptrons》一书,指出简单的线性感知器的功能是有限的,它无法解决线性不可分的两类样本的分类问题,如简单的线性感知器不可能实现“异或”的逻辑关系等。这一论断给当时人工神经元网络的研究带来沉重的打击。开始了神经网络发展史上长达10年的低潮期。
(1)、自组织神经网络SOM模型:1972年,芬兰的KohonenT.教授,提出了自组织神经网络SOM(Self-Organizing feature map)。后来的神经网络主要是根据KohonenT.的工作来实现的。SOM网络是一类无导师学习网络,主要用于模式识别﹑语音识别及分类问题。它采用一种“胜者为王”的竞争学习算法,与先前提出的感知器有很大的不同,同时它的学习训练方式是无指导训练,是一种自组织网络。这种学习训练方式往往是在不知道有哪些分类类型存在时,用作提取分类信息的一种训练。
(2)、自适应共振理论ART:1976年,美国Grossberg教授提出了着名的自适应共振理论ART(Adaptive Resonance Theory),其学习过程具有自组织和自稳定的特征。

(1)、Hopfield模型:1982年,美国物理学家霍普菲尔德(Hopfield)提出了一种离散神经网络,即离散Hopfield网络,从而有力地推动了神经网络的研究。在网络中,它首次将李雅普诺夫(Lyapunov)函数引入其中,后来的研究学者也将Lyapunov函数称为能量函数。证明了网络的稳定性。1984年,Hopfield 又提出了一种连续神经网络,将网络中神经元的激活函数由离散型改为连续型。1985 年,Hopfield和Tank利用Hopfield神经网络解决了着名的旅行推销商问题(Travelling Salesman Problem)。Hopfield神经网络是一组非线性微分方程。Hopfield的模型不仅对人工神经网络信息存储和提取功能进行了非线性数学概括,提出了动力方程和学习方程,还对网络算法提供了重要公式和参数,使人工神经网络的构造和学习有了理论指导,在Hopfield模型的影响下,大量学者又激发起研究神经网络的热情,积极投身于这一学术领域中。因为Hopfield 神经网络在众多方面具有巨大潜力,所以人们对神经网络的研究十分地重视,更多的人开始了研究神经网络,极大地推动了神经网络的发展。
(2)、Boltzmann机模型:1983年,Kirkpatrick等人认识到模拟退火算法可用于NP完全组合优化问题的求解,这种模拟高温物体退火过程来找寻全局最优解的方法最早由Metropli等人1953年提出的。1984年,Hinton与年轻学者Sejnowski等合作提出了大规模并行网络学习机,并明确提出隐单元的概念,这种学习机后来被称为Boltzmann机。
Hinton和Sejnowsky利用统计物理学的感念和方法,首次提出的多层网络的学习算法,称为Boltzmann 机模型。
(3)、BP神经网络模型:1986年,儒默哈特(D.E.Ru melhart)等人在多层神经网络模型的基础上,提出了多层神经网络权值修正的反向传播学习算法----BP算法(Error Back-Propagation),解决了多层前向神经网络的学习问题,证明了多层神经网络具有很强的学习能力,它可以完成许多学习任务,解决许多实际问题。
(4)、并行分布处理理论:1986年,由Rumelhart和McCkekkand主编的《Parallel Distributed Processing:Exploration in the Microstructures of Cognition》,该书中,他们建立了并行分布处理理论,主要致力于认知的微观研究,同时对具有非线性连续转移函数的多层前馈网络的误差反向传播算法即BP算法进行了详尽的分析,解决了长期以来没有权值调整有效算法的难题。可以求解感知机所不能解决的问题,回答了《Perceptrons》一书中关于神经网络局限性的问题,从实践上证实了人工神经网络有很强的运算能力。
(5)、细胞神经网络模型:1988年,Chua和Yang提出了细胞神经网络(CNN)模型,它是一个细胞自动机特性的大规模非线性计算机仿真系统。Kosko建立了双向联想存储模型(BAM),它具有非监督学习能力。
(6)、Darwinism模型:Edelman提出的Darwinism模型在90年代初产生了很大的影响,他建立了一种神经网络系统理论。
(7)、1988年,Linsker对感知机网络提出了新的自组织理论,并在Shanon信息论的基础上形成了最大互信息理论,从而点燃了基于NN的信息应用理论的光芒。
(8)、1988年,Broomhead和Lowe用径向基函数(Radialbasis function, RBF)提出分层网络的设计方法,从而将NN的设计与数值分析和线性适应滤波相挂钩。
(9)、1991年,Haken把协同引入神经网络,在他的理论框架中,他认为,认知过程是自发的,并断言模式识别过程即是模式形成过程。
(10)、1994年,廖晓昕关于细胞神经网络的数学理论与基础的提出,带来了这个领域新的进展。通过拓广神经网络的激活函数类,给出了更一般的时滞细胞神经网络(DCNN)、Hopfield神经网络(HNN)、双向联想记忆网络(BAM)模型。
(11)、90年代初,Vapnik等提出了支持向量机(Supportvector machines, SVM)和VC(Vapnik-Chervonenkis)维数的概念。
经过多年的发展,已有上百种的神经网络模型被提出。

深度学习(Deep Learning,DL)由Hinton等人于2006年提出,是机器学习的一个新领域。深度学习本质上是构建含有多隐层的机器学习架构模型,通过大规模数据进行训练,得到大量更具代表性的特征信息。深度学习算法打破了传统神经网络对层数的限制,可根据设计者需要选择网络层数。

突触是神经元之间相互连接的接口部分,即一个神经元的神经末梢与另一个神经元的树突相接触的交界面,位于神经元的神经末梢尾端。突触是轴突的终端。
大脑可视作为1000多亿神经元组成的神经网络。神经元的信息传递和处理是一种电化学活动.树突由于电化学作用接受外界的刺激,通过胞体内的活动体现为轴突电位,当轴突电位达到一定的值则形成神经脉冲或动作电位;再通过轴突末梢传递给其它的神经元.从控制论的观点来看;这一过程可以看作一个多输入单输出非线性系统的动态过程。
神经元的功能特性:(1)时空整合功能;(2)神经元的动态极化性;(3)兴奋与抑制状态;(4)结构的可塑性;(5)脉冲与电位信号的转换;(6)突触延期和不应期;(7)学习、遗忘和疲劳。

神经网络从两个方面模拟大脑:
(1)、神经网络获取的知识是从外界环境中学习得来的。
(2)、内部神经元的连接强度,即突触权值,用于储存获取的知识。
神经网络系统由能够处理人类大脑不同部分之间信息传递的由大量神经元连接形成的拓扑结构组成,依赖于这些庞大的神经元数目和它们之间的联系,人类的大脑能够收到输入的信息的刺激由分布式并行处理的神经元相互连接进行非线性映射处理,从而实现复杂的信息处理和推理任务。
对于某个处理单元(神经元)来说,假设来自其他处理单元(神经元)i的信息为Xi,它们与本处理单元的互相作用强度即连接权值为Wi, i=0,1,…,n-1,处理单元的内部阈值为θ。那么本处理单元(神经元)的输入为:

,而处理单元的输出为:

式中,xi为第i个元素的输入,wi为第i个处理单元与本处理单元的互联权重即神经元连接权值。f称为激活函数或作用函数,它决定节点(神经元)的输出。θ表示隐含层神经节点的阈值。

神经网络的主要工作是建立模型和确定权值,一般有前向型和反馈型两种网络结构。通常神经网络的学习和训练需要一组输入数据和输出数据对,选择网络模型和传递、训练函数后,神经网络计算得到输出结果,根据实际输出和期望输出之间的误差进行权值的修正,在网络进行判断的时候就只有输入数据而没有预期的输出结果。神经网络一个相当重要的能力是其网络能通过它的神经元权值和阈值的不断调整从环境中进行学习,直到网络的输出误差达到预期的结果,就认为网络训练结束。

对于这样一种多输入、单输出的基本单元可以进一步从生物化学、电生物学、数学等方面给出描述其功能的模型。利用大量神经元相互连接组成的人工神经网络,将显示出人脑的若干特征,人工神经网络也具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重wij值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。人工神经网络是一个具有学习能力的系统,可以发展知识,以至超过设计者原有的知识水平。通常,它的学习(或训练)方式可分为两种,一种是有监督(supervised)或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督(unsupervised)学习或称无导师学习,这时,只规定学习方式或某些规则,而具体的学习内容随系统所处环境(即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似于人脑的功能。
在人工神经网络设计及应用研究中,通常需要考虑三个方面的内容,即神经元激活函数、神经元之间的连接形式和网络的学习(训练)。

② 神经网络BP模型

一、BP模型概述

误差逆传播(Error Back-Propagation)神经网络模型简称为BP(Back-Propagation)网络模型。

Pall Werbas博士于1974年在他的博士论文中提出了误差逆传播学习算法。完整提出并被广泛接受误差逆传播学习算法的是以Rumelhart和McCelland为首的科学家小组。他们在1986年出版“Parallel Distributed Processing,Explorations in the Microstructure of Cognition”(《并行分布信息处理》)一书中,对误差逆传播学习算法进行了详尽的分析与介绍,并对这一算法的潜在能力进行了深入探讨。

BP网络是一种具有3层或3层以上的阶层型神经网络。上、下层之间各神经元实现全连接,即下层的每一个神经元与上层的每一个神经元都实现权连接,而每一层各神经元之间无连接。网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,神经元的激活值从输入层经各隐含层向输出层传播,在输出层的各神经元获得网络的输入响应。在这之后,按减小期望输出与实际输出的误差的方向,从输入层经各隐含层逐层修正各连接权,最后回到输入层,故得名“误差逆传播学习算法”。随着这种误差逆传播修正的不断进行,网络对输入模式响应的正确率也不断提高。

BP网络主要应用于以下几个方面:

1)函数逼近:用输入模式与相应的期望输出模式学习一个网络逼近一个函数;

2)模式识别:用一个特定的期望输出模式将它与输入模式联系起来;

3)分类:把输入模式以所定义的合适方式进行分类;

4)数据压缩:减少输出矢量的维数以便于传输或存储。

在人工神经网络的实际应用中,80%~90%的人工神经网络模型采用BP网络或它的变化形式,它也是前向网络的核心部分,体现了人工神经网络最精华的部分。

二、BP模型原理

下面以三层BP网络为例,说明学习和应用的原理。

1.数据定义

P对学习模式(xp,dp),p=1,2,…,P;

输入模式矩阵X[N][P]=(x1,x2,…,xP);

目标模式矩阵d[M][P]=(d1,d2,…,dP)。

三层BP网络结构

输入层神经元节点数S0=N,i=1,2,…,S0;

隐含层神经元节点数S1,j=1,2,…,S1;

神经元激活函数f1[S1];

权值矩阵W1[S1][S0];

偏差向量b1[S1]。

输出层神经元节点数S2=M,k=1,2,…,S2;

神经元激活函数f2[S2];

权值矩阵W2[S2][S1];

偏差向量b2[S2]。

学习参数

目标误差ϵ;

初始权更新值Δ0

最大权更新值Δmax

权更新值增大倍数η+

权更新值减小倍数η-

2.误差函数定义

对第p个输入模式的误差的计算公式为

中国矿产资源评价新技术与评价新模型

y2kp为BP网的计算输出。

3.BP网络学习公式推导

BP网络学习公式推导的指导思想是,对网络的权值W、偏差b修正,使误差函数沿负梯度方向下降,直到网络输出误差精度达到目标精度要求,学习结束。

各层输出计算公式

输入层

y0i=xi,i=1,2,…,S0;

隐含层

中国矿产资源评价新技术与评价新模型

y1j=f1(z1j),

j=1,2,…,S1;

输出层

中国矿产资源评价新技术与评价新模型

y2k=f2(z2k),

k=1,2,…,S2。

输出节点的误差公式

中国矿产资源评价新技术与评价新模型

对输出层节点的梯度公式推导

中国矿产资源评价新技术与评价新模型

E是多个y2m的函数,但只有一个y2k与wkj有关,各y2m间相互独立。

其中

中国矿产资源评价新技术与评价新模型

中国矿产资源评价新技术与评价新模型

设输出层节点误差为

δ2k=(dk-y2k)·f2′(z2k),

中国矿产资源评价新技术与评价新模型

同理可得

中国矿产资源评价新技术与评价新模型

对隐含层节点的梯度公式推导

中国矿产资源评价新技术与评价新模型

E是多个y2k的函数,针对某一个w1ji,对应一个y1j,它与所有的y2k有关。因此,上式只存在对k的求和,其中

中国矿产资源评价新技术与评价新模型

中国矿产资源评价新技术与评价新模型

设隐含层节点误差为

中国矿产资源评价新技术与评价新模型

中国矿产资源评价新技术与评价新模型

同理可得

中国矿产资源评价新技术与评价新模型

4.采用弹性BP算法(RPROP)计算权值W、偏差b的修正值ΔW,Δb

1993年德国 Martin Riedmiller和Heinrich Braun 在他们的论文“A Direct Adaptive Method for Faster Backpropagation Learning:The RPROP Algorithm”中,提出Resilient Backpropagation算法——弹性BP算法(RPROP)。这种方法试图消除梯度的大小对权步的有害影响,因此,只有梯度的符号被认为表示权更新的方向。

权改变的大小仅仅由权专门的“更新值”

确定

中国矿产资源评价新技术与评价新模型

其中

表示在模式集的所有模式(批学习)上求和的梯度信息,(t)表示t时刻或第t次学习。

权更新遵循规则:如果导数是正(增加误差),这个权由它的更新值减少。如果导数是负,更新值增加。

中国矿产资源评价新技术与评价新模型

RPROP算法是根据局部梯度信息实现权步的直接修改。对于每个权,我们引入它的

各自的更新值

,它独自确定权更新值的大小。这是基于符号相关的自适应过程,它基

于在误差函数E上的局部梯度信息,按照以下的学习规则更新

中国矿产资源评价新技术与评价新模型

其中0<η-<1<η+

在每个时刻,如果目标函数的梯度改变它的符号,它表示最后的更新太大,更新值

应由权更新值减小倍数因子η-得到减少;如果目标函数的梯度保持它的符号,更新值应由权更新值增大倍数因子η+得到增大。

为了减少自由地可调参数的数目,增大倍数因子η+和减小倍数因子η被设置到固定值

η+=1.2,

η-=0.5,

这两个值在大量的实践中得到了很好的效果。

RPROP算法采用了两个参数:初始权更新值Δ0和最大权更新值Δmax

当学习开始时,所有的更新值被设置为初始值Δ0,因为它直接确定了前面权步的大小,它应该按照权自身的初值进行选择,例如,Δ0=0.1(默认设置)。

为了使权不至于变得太大,设置最大权更新值限制Δmax,默认上界设置为

Δmax=50.0。

在很多实验中,发现通过设置最大权更新值Δmax到相当小的值,例如

Δmax=1.0。

我们可能达到误差减小的平滑性能。

5.计算修正权值W、偏差b

第t次学习,权值W、偏差b的的修正公式

W(t)=W(t-1)+ΔW(t)

b(t)=b(t-1)+Δb(t)

其中,t为学习次数。

6.BP网络学习成功结束条件每次学习累积误差平方和

中国矿产资源评价新技术与评价新模型

每次学习平均误差

中国矿产资源评价新技术与评价新模型

当平均误差MSE<ε,BP网络学习成功结束。

7.BP网络应用预测

在应用BP网络时,提供网络输入给输入层,应用给定的BP网络及BP网络学习得到的权值W、偏差b,网络输入经过从输入层经各隐含层向输出层的“顺传播”过程,计算出BP网的预测输出。

8.神经元激活函数f

线性函数

f(x)=x,

f′(x)=1,

f(x)的输入范围(-∞,+∞),输出范围(-∞,+∞)。

一般用于输出层,可使网络输出任何值。

S型函数S(x)

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围(0,1)。

f′(x)=f(x)[1-f(x)],

f′(x)的输入范围(-∞,+∞),输出范围(0,

]。

一般用于隐含层,可使范围(-∞,+∞)的输入,变成(0,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。

在用于模式识别时,可用于输出层,产生逼近于0或1的二值输出。

双曲正切S型函数

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围(-1,1)。

f′(x)=1-f(x)·f(x),

f′(x)的输入范围(-∞,+∞),输出范围(0,1]。

一般用于隐含层,可使范围(-∞,+∞)的输入,变成(-1,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。

阶梯函数

类型1

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围{0,1}。

f′(x)=0。

类型2

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围{-1,1}。

f′(x)=0。

斜坡函数

类型1

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围[0,1]。

中国矿产资源评价新技术与评价新模型

f′(x)的输入范围(-∞,+∞),输出范围{0,1}。

类型2

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围[-1,1]。

中国矿产资源评价新技术与评价新模型

f′(x)的输入范围(-∞,+∞),输出范围{0,1}。

三、总体算法

1.三层BP网络(含输入层,隐含层,输出层)权值W、偏差b初始化总体算法

(1)输入参数X[N][P],S0,S1,f1[S1],S2,f2[S2];

(2)计算输入模式X[N][P]各个变量的最大值,最小值矩阵 Xmax[N],Xmin[N];

(3)隐含层的权值W1,偏差b1初始化。

情形1:隐含层激活函数f( )都是双曲正切S型函数

1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];

2)计算输入模式X的每个变量的范围均值向量Xmid[N];

3)计算W,b的幅度因子Wmag

4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];

5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];

6)计算W[S1][S0],b[S1];

7)计算隐含层的初始化权值W1[S1][S0];

8)计算隐含层的初始化偏差b1[S1];

9))输出W1[S1][S0],b1[S1]。

情形2:隐含层激活函数f( )都是S型函数

1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];

2)计算输入模式X的每个变量的范围均值向量Xmid[N];

3)计算W,b的幅度因子Wmag;

4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];

5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];

6)计算W[S1][S0],b[S1];

7)计算隐含层的初始化权值W1[S1][S0];

8)计算隐含层的初始化偏差b1[S1];

9)输出W1[S1][S0],b1[S1]。

情形3:隐含层激活函数f( )为其他函数的情形

1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];

2)计算输入模式X的每个变量的范围均值向量Xmid[N];

3)计算W,b的幅度因子Wmag

4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];

5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];

6)计算W[S1][S0],b[S1];

7)计算隐含层的初始化权值W1[S1][S0];

8)计算隐含层的初始化偏差b1[S1];

9)输出W1[S1][S0],b1[S1]。

(4)输出层的权值W2,偏差b2初始化

1)产生[-1,1]之间均匀分布的S2×S1维随机数矩阵W2[S2][S1];

2)产生[-1,1]之间均匀分布的S2×1维随机数矩阵b2[S2];

3)输出W2[S2][S1],b2[S2]。

2.应用弹性BP算法(RPROP)学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b总体算法

函数:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)

(1)输入参数

P对模式(xp,dp),p=1,2,…,P;

三层BP网络结构;

学习参数。

(2)学习初始化

1)

2)各层W,b的梯度值

初始化为零矩阵。

(3)由输入模式X求第一次学习各层输出y0,y1,y2及第一次学习平均误差MSE

(4)进入学习循环

epoch=1

(5)判断每次学习误差是否达到目标误差要求

如果MSE<ϵ,

则,跳出epoch循环,

转到(12)。

(6)保存第epoch-1次学习产生的各层W,b的梯度值

(7)求第epoch次学习各层W,b的梯度值

1)求各层误差反向传播值δ;

2)求第p次各层W,b的梯度值

3)求p=1,2,…,P次模式产生的W,b的梯度值

的累加。

(8)如果epoch=1,则将第epoch-1次学习的各层W,b的梯度值

设为第epoch次学习产生的各层W,b的梯度值

(9)求各层W,b的更新

1)求权更新值Δij更新;

2)求W,b的权更新值

3)求第epoch次学习修正后的各层W,b。

(10)用修正后各层W、b,由X求第epoch次学习各层输出y0,y1,y2及第epoch次学习误差MSE

(11)epoch=epoch+1,

如果epoch≤MAX_EPOCH,转到(5);

否则,转到(12)。

(12)输出处理

1)如果MSE<ε,

则学习达到目标误差要求,输出W1,b1,W2,b2

2)如果MSE≥ε,

则学习没有达到目标误差要求,再次学习。

(13)结束

3.三层BP网络(含输入层,隐含层,输出层)预测总体算法

首先应用Train3lBP_RPROP( )学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b,然后应用三层BP网络(含输入层,隐含层,输出层)预测。

函数:Simu3lBP( )。

1)输入参数:

P个需预测的输入数据向量xp,p=1,2,…,P;

三层BP网络结构;

学习得到的各层权值W、偏差b。

2)计算P个需预测的输入数据向量xp(p=1,2,…,P)的网络输出 y2[S2][P],输出预测结果y2[S2][P]。

四、总体算法流程图

BP网络总体算法流程图见附图2。

五、数据流图

BP网数据流图见附图1。

六、实例

实例一 全国铜矿化探异常数据BP 模型分类

1.全国铜矿化探异常数据准备

在全国铜矿化探数据上用稳健统计学方法选取铜异常下限值33.1,生成全国铜矿化探异常数据。

2.模型数据准备

根据全国铜矿化探异常数据,选取7类33个矿点的化探数据作为模型数据。这7类分别是岩浆岩型铜矿、斑岩型铜矿、矽卡岩型、海相火山型铜矿、陆相火山型铜矿、受变质型铜矿、海相沉积型铜矿,另添加了一类没有铜异常的模型(表8-1)。

3.测试数据准备

全国化探数据作为测试数据集。

4.BP网络结构

隐层数2,输入层到输出层向量维数分别为14,9、5、1。学习率设置为0.9,系统误差1e-5。没有动量项。

表8-1 模型数据表

续表

5.计算结果图

如图8-2、图8-3。

图8-2

图8-3 全国铜矿矿床类型BP模型分类示意图

实例二 全国金矿矿石量品位数据BP 模型分类

1.模型数据准备

根据全国金矿储量品位数据,选取4类34个矿床数据作为模型数据,这4类分别是绿岩型金矿、与中酸性浸入岩有关的热液型金矿、微细浸染型型金矿、火山热液型金矿(表8-2)。

2.测试数据准备

模型样本点和部分金矿点金属量、矿石量、品位数据作为测试数据集。

3.BP网络结构

输入层为三维,隐层1层,隐层为三维,输出层为四维,学习率设置为0.8,系统误差1e-4,迭代次数5000。

表8-2 模型数据

4.计算结果

结果见表8-3、8-4。

表8-3 训练学习结果

表8-4 预测结果(部分)

续表

③ (急)如何用MATLAB建立ANN(人工神经网络模型)

问题描述:有两个自变量,一个因变量,10个样本(这里就取少一点好了)。用实际问题来表述,假设一个股票,开盘价 x1,收盘价 x2,第二天的股价 y。 那用神经网络来预测的目的是,根据10天的开盘价和收盘价,来预测未来股价。显然,这里的y与x1和x2相关,我们要训练一个网络(net)来让他尽可能的预测一个yMATLAB程序clcclearload data input output%input就是包含了x1和x2 10天数据的矩阵,说白了就是20个数的矩阵。output是y的一个向量,%10个数%需要自己找一些数据赋值给input和ouputP=input;T=output;%这里P和T必须是 x1 x2和y的行向量组合。对于P,x1是行向量,x2是行向量。P=[x1;x2]; T=y. y是行向量Epochs=5000;NodeNum=12; TypeNum=1;TF1='logsig'; TF2='purelin';%设置一些初始参数,Epochs是迭代上限次数,NodeNum是第一个隐藏层的神经元个数,%TypeNum是几层。TF1和TF2分别定义了几个传递函数。net=newff(minmax(P),[NodeNum TypeNum],{TF1 TF2},'trainlm');%建立一个神经网络,训练输入和输出数据都有了,设置隐藏层的个数。net.trainParam.epochs=Epochs;net.trainParam.goal=1e-4;net.trainParam.min_grad=1e-4;net.trainParam.show=200;net.trainParam.time=inf;%设置一些训练时的参数,第一个是每次训练的最大迭代次数;net=train(net,P,T);%开始网络训练P_test=P;B_test=T;%就用原始的数据进行测试X=sim(net,P_test);%测试Erro=abs(B_test-X);sigma=std(Erro);%计算出预测值和实际值的误差,求出方差。将来方差可以用来随机调整

④ 如何建立神经网络模型

人工神经网络有很多种,我只会最常用的BP神经网络。不同的网络有不同的结构和不同的学习算法。
简单点说,人工神经网络就是一个函数。只是这个函数有别于一般的函数。它比普通的函数多了一个学习的过程。
在学习的过程中,它根据正确结果不停地校正自己的网络结构,最后达到一个满意的精度。这时,它才开始真正的工作阶段。
学习人工神经网络最好先安装MathWords公司出的MatLab软件。利用该软件,你可以在一周之内就学会建立你自己的人工神经网络解题模型。
如果你想自己编程实现人工神经网络,那就需要找一本有关的书籍,专门看神经网络学习算法的那部分内容。因为“学习算法”是人工神经网络的核心。最常用的BP人工神经网络,使用的就是BP学习算法。

⑤ bp神经网络

BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。

所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。

如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。

如图所示拓扑结构的单隐层前馈网络,一般称为三层前馈网或三层感知器,即:输入层、中间层(也称隐层)和输出层。它的特点是:各层神经元仅与相邻层神经元之间相互全连接,同层内神经元之间无连接,各层神经元之间无反馈连接,构成具有层次结构的前馈型神经网络系统。单计算层前馈神经网络只能求解线性可分问题,能够求解非线性问题的网络必须是具有隐层的多层神经网络。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:

(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。

(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。

(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。

(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。

纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
神经网络可以用作分类、聚类、预测等。神经网络需要有一定量的历史数据,通过历史数据的训练,网络可以学习到数据中隐含的知识。在你的问题中,首先要找到某些问题的一些特征,以及对应的评价数据,用这些数据来训练神经网络。

虽然BP网络得到了广泛的应用,但自身也存在一些缺陷和不足,主要包括以下几个方面的问题。

首先,由于学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的,可采用变化的学习速率或自适应的学习速率加以改进。

其次,BP算法可以使权值收敛到某个值,但并不保证其为误差平面的全局最小值,这是因为采用梯度下降法可能产生一个局部最小值。对于这个问题,可以采用附加动量法来解决。

再次,网络隐含层的层数和单元数的选择尚无理论上的指导,一般是根据经验或者通过反复实验确定。因此,网络往往存在很大的冗余性,在一定程度上也增加了网络学习的负担。

最后,网络的学习和记忆具有不稳定性。也就是说,如果增加了学习样本,训练好的网络就需要从头开始训练,对于以前的权值和阈值是没有记忆的。但是可以将预测、分类或聚类做的比较好的权值保存。

⑥ 极端气温、降雨-洪水模型(BP神经网络)的建立

极端气温、降雨与洪水之间有一定的联系。根据1958~2007年广西西江流域极端气温、极端降雨和梧州水文站洪水数据,以第5章相关分析所确定的显着影响梧州水文站年最大流量的测站的相应极端气候因素(表4.22)为输入,建立人工神经网络模型。

4.5.1.1 BP神经网络概述

(1)基于BP算法的多层前馈网络模型

采用BP算法的多层前馈网络是至今为止应用最广泛的神经网络,在多层的前馈网的应用中,如图4.20所示的三层前馈网的应用最为普遍,其包括了输入层、隐层和输出层。

图4.20 典型的三层BP神经网络结构

在正向传播中,输入信息从输入层经隐含层逐层处理,并传向输出层。如果输出层不能得到期望的输出结果,则转入反向传播,将误差信号沿原来的连同通路返回,通过修改各层神经元的权值,使得误差最小。BP算法流程如图4.21所示。

图4.21 BP算法流程图

容易看出,BP学习算法中,各层权值调整均由3个因素决定,即学习率、本层输出的误差信号以及本层输入信号y(或x)。其中,输出层误差信号同网络的期望输出与实际输出之差有关,直接反映了输出误差,而各隐层的误差信号与前面各层的误差信号都有关,是从输出层开始逐层反传过来的。

1988年,Cybenko指出两个隐含层就可表示输入图形的任意输出函数。如果BP网络只有两个隐层,且输入层、第一隐含层、第二隐层和输出层的单元个数分别为n,p,q,m,则该网络可表示为BP(n,p,q,m)。

(2)研究区极端气温、极端降雨影响年最大流量过程概化

极端气温、极端降雨影响年最大流量的过程极其复杂,从极端降雨到年最大流量,中间要经过蒸散发、分流、下渗等环节,受到地形、地貌、下垫面、土壤地质以及人类活动等多种因素的影响。可将一个极端气候-年最大流量间复杂的水过程概化为小尺度的水系统,该水系统的主要影响因子可通过对年最大流量影响显着的站点的极端气温和极端降雨体现出来,而其中影响不明显的站点可忽略,从而使问题得以简化。

BP神经网络是一个非线形系统,可用于逼近非线形映射关系,也可用于逼近一个极为复杂的函数关系。极端气候-年最大流量水系统是一个非常复杂的映射关系,可将之概化为一个系统。BP神经网络与研究流域的极端气候-年最大流量水系统的结构是相似的,利用BP神经网络,对之进行模拟逼近。

(3)隐含层单元数的确定

隐含层单元数q与所研究的具体问题有关,目前尚无统一的确定方法,通常根据网络训练情况采用试错法确定。在训练中网络的收敛采用输出值Ykp与实测值tp的误差平方和进行控制

变环境条件下的水资源保护与可持续利用研究

作者认为,虽然现今的BP神经网络还是一个黑箱模型,其参数没有水文物理意义,在本节的研究过程中,将尝试着利用极端气候空间分析的结果来指导隐含层神经元个数的选取。

(4)传递函数的选择

BP神经网络模型算法存在需要较长的训练时间、完全不能训练、易陷入局部极小值等缺点,可通过对模型附加动量项或设置自适应学习速率来改良。本节采用MATLAB工具箱中带有自适应学习速率进行反向传播训练的traingdm()函数来实现。

(5)模型数据的归一化处理

由于BP网络的输入层物理量及数值相差甚远,为了加快网络收敛的速度,使网络在训练过程中易于收敛,对输入数据进行归一化处理,即将输入的原始数据都化为0~1之间的数。本节将年极端最高气温的数据乘以0.01;将极端最低气温的数据乘以0.1;年最大1d、3d、7d降雨量的数据乘以0.001;梧州水文站年最大流量的数据乘以0.00001,其他输入数据也按类似的方法进行归一化处理。

(6)年最大流量的修正

梧州水文站以上的流域集水面积为32.70万km2,广西境内流域集水面积为20.24万km2,广西境内流域集水面积占梧州水文站以上的流域集水面积的61.91%。因此,选取2003~2007年梧州水文站年最大流量和红水河的天峨水文站年最大流量,分别按式4.10计算每年的贡献率(表4.25),取其平均值作为广西西江流域极端降雨对梧州水文站年最大流量的平均贡献率,最后确定平均贡献率为76.88%。

变环境条件下的水资源保护与可持续利用研究

表4.25 2003~2007年极端降雨对梧州水文站年最大流量的贡献率

建立“年极端气温、降雨与梧州年最大流量模型”时,应把平均贡献率与梧州水文站年最大流量的乘积作为模型输入的修正年最大流量,而预测的年最大流量应该为输出的年最大流量除以平均贡献率76.88%,以克服极端气温和降雨研究范围与梧州水文站集水面积不一致的问题。

4.5.1.2年极端气温、年最大1d降雨与梧州年最大流量的BP神经网络模型

(1)模型的建立

以1958~1997年年极端最高气温、年极端最低气温、年最大1d降雨量与梧州水文站年最大流量作为学习样本拟合、建立“年极端气温、年最大1d降雨-梧州年最大流量BP神经网络模型”。以梧州气象站的年极端最高气温,桂林、钦州气象站的年极端最低气温,榜圩、马陇、三门、黄冕、沙街、勾滩、天河、百寿、河池、贵港、金田、平南、大化、桂林、修仁、五将雨量站的年最大1d降雨量为输入,梧州水文站年最大流量为输出,隐含层层数取2,建立(19,p,q,1)BP神经网络模型,其中神经元数目p,q经试算分别取16和3,第一隐层、第二隐层的神经元采用tansig传递函数,输出层的神经元采用线性传递函数,训练函数选用traingdm,学习率取0.1,动量项取0.9,目标取0.0001,最大训练次数取200000。BP网络模型参数见表4.26,结构如图4.22所示。

图4.22年极端气温、年最大1d降雨-梧州年最大流量BP模型结构图

表4.26 BP网络模型参数一览表

从结构上分析,梧州水文站年最大流量产生过程中,年最高气温、年最低气温和各支流相应的流量都有其阈值,而极端气温和极端降雨是其输入,年最大流量是其输出,这类似于人工神经元模型中的阈值、激活值、输出等器件。输入年最大1d降雨时选用的雨量站分布在14条支流上(表4.27),极端降雨发生后,流经14条支流汇入梧州,在这一过程中极端气温的变化影响极端降雨的蒸散发,选用的雨量站分布在年最大1d降雨四个自然分区的Ⅱ、Ⅲ、Ⅳ3个区。该过程可与BP神经网络结构进行类比(表4.28),其中, 14条支流相当于第一隐含层中的14个神经元,年最高气温和年最低气温相当于第一隐含层中的2个神经元,年最大1d降雨所在的3个分区相当于第二隐含层的3个神经元,年最高气温、年最低气温的影响值和各支流流量的奉献值相当于隐含层中人工神经元的阈值,从整体上来说,BP神经网络的结构已经灰箱化。

表4.27 选用雨量站所在支流一览表

表4.28 BP神经网络构件物理意义一览表

(2)训练效果分析

训练样本为40个,经过113617次训练,达到精度要求。在命令窗口执行运行命令,网络开始学习和训练,其训练过程如图4.23所示,训练结果见表4.29和图4.24。

表4.29年最大流量训练结果

图4.23 神经网络训练过程图

图4.24年最大流量神经网络模型训练结果

从图4.26可知,训练后的BP网络能较好地逼近给定的目标函数。从训练样本检验结果(表4.5)可得:1958~1997年40年中年最大流量模拟值与实测值的相对误差小于10%和20%的分别为39年,40年,合格率为100%。说明“年极端气温、年最大1d降雨- 梧州年最大流量预测模型”的实际输出与实测结果误差很小,该模型的泛化能力较好,模拟结果较可靠。

(3)模型预测检验

把1998~2007年梧州气象站的年极端最高气温,桂林、钦州气象站的年极端最低气温,榜圩、马陇、三门、黄冕、沙街、勾滩、天河、百寿、河池、贵港、金田、平南、大化、桂林、修仁、五将雨量站的年最大1d降雨量输入到“年极端气温、年最大1d降雨梧州年最大流量BP神经网络模型”。程序运行后网络输出预测值与已知的实际值进行比较,其预测检验结果见图4.25,表4.30。

图4.25年最大流量神经网络模型预测检验结果

表4.30 神经网络模型预测结果与实际结果比较

从预测检验结果可知:1998~2007年10年中年最大流量模拟值与实测值的相对误差小于20%的为9年,合格率为90%,效果较好。

4.5.1.3年极端气温、年最大7d降雨与梧州年最大流量的BP神经网络模型

(1)模型的建立

以1958~1997年年极端最高气温、年极端最低气温、年最大7d降雨量和梧州水文站年最大流量作为学习样本来拟合、建立“年极端气温、年最大7d降雨- 梧州年最大流量BP神经网络模型”。以梧州气象站的年极端最高气温,桂林、钦州气象站的年极端最低气温,凤山、都安、马陇、沙街、大湟江口、大安、大化、阳朔、五将雨量站的年最大7d降雨量为输入,梧州水文站年最大流量为输出,隐含层层数取2,建立(12,p,q,1)BP神经网络模型,其中,神经元数目p,q经试算分别取10和4,第一隐层、第二隐层的神经元采用tansig传递函数,输出层的神经元采用线性传递函数,训练函数选用traingdm,学习率取0.1,动量项取0.9,目标取0.0001,最大训练次数取200000。BP网络模型参数见表4.31,结构如图4.26所示。

表4.31 BP网络模型参数一览表

图4.26年极端气温、年最大7d降雨-梧州年最大流量BP模型结构图

本节输入年最大7d降雨时选用的雨量站分布在8条支流上(表4.32),在发生极端降雨后,流经8条支流汇入梧州,在这一过程中极端气温的变化影响极端降雨的蒸散发,且选用的雨量站分布在年最大7d降雨四个自然分区的Ⅰ、Ⅱ、Ⅲ、Ⅳ4个区中。该过程可与BP神经网络结构进行类比(表4.33),其中,8条支流相当于第一隐含层中的8个神经元,年最高气温和年最低气温相当于第一隐含层中的2个神经元,年最大7d降雨所在的4个分区相当于第二隐含层的4个神经元,整体上来说,BP神经网络的结构已经灰箱化。

表4.32 选用雨量站所在支流一览表

表4.33 BP神经网络构件物理意义一览表

(2)训练效果分析

训练样本为40个,经过160876次的训练,达到精度要求,在命令窗口执行运行命令,网络开始学习和训练,其训练过程如图4.27所示,训练结果见表4.34,图4.28。

图4.27 神经网络训练过程图

表4.34年最大流量训练结果

图4.28年最大流量神经网络模型训练结果

从图4.28可知,训练后的BP网络能较好地逼近给定的目标函数。由训练样本检验结果(表4.34)可得:1958~1997年40年中年最大流量模拟值与实测值的相对误差小于10%和20%的,分别为38年、40年,合格率为100%。说明“年极端气温、年最大7d降雨-梧州年最大流量BP神经网络模型”的泛化能力较好,模拟的结果较可靠。

(3)模型预测检验

把1998~2007年梧州气象站的年极端最高气温,桂林、钦州气象站的年极端最低气温,凤山、都安、马陇、沙街、大湟江口、大安、大化、阳朔、五将雨量站的年最大7d降雨量输入到“年极端气温、年最大7d降雨- 梧州年最大流量BP神经网络模型”。程序运行后网络输出预测值与已知的实际值进行比较,其预测结果见图4.29和表4.35。

图4.29年最大流量神经网络模型预测检验结果

表4.35 神经网络模型预测结果与实际结果比较

由预测检验结果可知:1998~2007年10年中年最大流量模拟值与实测值的相对误差小于20%的为7年,合格率为70%,效果较好。

4.5.1.4 梧州年最大流量-年最高水位的BP神经网络模型

(1)模型的建立

以1941~1997年梧州水文站的年最大流量与年最高水位作为学习样本来拟合、建立梧州水文站的“年最大流量-年最高水位BP神经网络模型”。以年最大流量为输入,年最高水位为输出,隐含层层数取1,建立(1,q,1)BP神经网络模型,其中,神经元数目q经试算取7,隐含层、输出层的神经元采用线性传递函数,训练函数选用traingdm,学习率取0.1,动量项取0.9,目标取0.00001,最大训练次数取200000。BP网络模型参数见表4.36,结构如图4.30所示。

表4.36 BP网络模型参数一览表

图4.30 梧州年最大流量—年最高水位BP模型结构图

广西西江流域主要河流有南盘江、红水河、黔浔江、郁江、柳江、桂江、贺江。7条主要河流相当于隐含层中的7个神经元(表4.37),整体上来说,BP神经网络的结构已经灰箱化。

表4.37 BP神经网络构件物理意义一览表

(2)训练效果分析

训练样本为57个,经过3327次训练,误差下降梯度已达到最小值,但误差为3.00605×10-5,未达到精度要求。在命令窗口执行运行命令,网络开始学习和训练,其训练过程如图4.31所示,训练结果见图4.32和表4.38。

表4.38年最高水位训练结果

从图4.32和表4.19可看出,训练后的BP网络能较好地逼近给定的目标函数。对于训练样本,从检验结果可知:1941~1997年57年中年最高水位模拟值与实测值的相对误差小于10%和20%的分别为56a,57a,合格率为100%。说明“年最大流量-年最高水位BP神经网络模型”的实际输出与实测结果误差很小,该模型的泛化能力较好,模拟的结果比较可靠。

图4.31 神经网络训练过程图

图4.32年最高水位神经网络模型训练结果

(3)模型预测检验

把1998~2007年梧州水文站年最大流量输入到“年最大流量-年最高水位BP神经网络模型”。程序运行后网络输出预测值与已知的实际值进行比较,其预测结果见图4.33,表4.39。

表4.39 神经网络模型预测结果与实际结果比较

从预测检验结果可知:1998~2007年10年中,年最高水位模拟值与实测值的相对误差小于20%的为10年,合格率为100%,效果较好。

图4.33年最高水位量神经网络模型预测检验结果

⑦ Keras快速构建神经网络模型

用Keras搭建神经网络的步骤:

深度学习框架Keras——像搭积木般构建神经网络,主要分为7个部分,每个部分只需要几个keras API函数就能实现,用户即可像搭积木般一层层构建神经网络模型。

1. 创建模型 Create model

2. 添加层级 Add Layer

3. 模型编译 Compile

4. 数据填充 Fit

5. 模型评估 Evaluate

6. 模型预测 Predict

7. 模型保存 Save model

下面章节会对每一部分具体来介绍。。。


Keras 中主要有三类模型:Sequential model, Functional model, Subclass model

在开始创建模型之前,首先需要引入tensorflow和keras模块,然后再创建一个Sequential model

Sequential API定义如下:

layers参数可以为空, 然后通过add method向模型中添加layer,相对应的通过pop method移除模型中layer。


创建Function API模型,可以调用Keras.Model来指定多输入多数出。

Keras.Model定义:



Layers是神经网络基本构建块。一个Layer包含了tensor-in/tensor-out的计算方法和一些状态,并保存在TensorFlow变量中(即layers的权重weights)。
Layers主要分为6个类别,基础层,核心层,卷基层,池化层,循环层,融合层。

对派生类的实现可以用以下方法:
** init (): 定义layer的属性,创建layer的静态变量。
** build(self, input_shape): 创建依赖于输入的变量,可以调用add_weight()。
** call(self, *args, **kwargs): 在确保已调用build()之后,在 call 中调用。
** get_config(self): 返回包含用于初始化此层的配置的字典类型。

创建SimpleDense派生类,在build()函数里添加trainable weights。实现y=input*w +b

结果输出:


创建ComputeSum派生类,在 init 函数里添加 non-trainable weights。实现输入矩阵沿轴0元素相加后,x=x+self.total

结果输出:


核心层是最常用的层,涉及到数据的转换和处理的时候都会用到这些层。

Dense层就是所谓的全连接神经网络层,简称全连接层。全连接层中的每个神经元与其前一层的所有神经元进行全连接。

Dense 实现以下操作: output = activation(dot(input, kernel) + bias) 其中 activation 是按逐个元素计算的激活函数,kernel 是由网络层创建的权值矩阵,以及 bias 是其创建的偏置向量 (只在 use_bias 为 True 时才有用)。


将激活函数应用于输出。输入信号进入神经元后进行的运算处理。

sigmoid、tanh、ReLU、softplus的对比曲线如下图所示:

激活函数可以通过设置单独的激活层Activation实现,也可以在构造层对象时通过传递 activation 参数实现:


Dropout在训练中每次更新时,将输入单元的按比率随机设置为0,这有助于防止过拟合。未设置为0的输入将按1 /(1-rate)放大,以使所有输入的总和不变。

请注意,仅当训练设置为True时才应用Dropout层,以便在推理过程中不会丢弃任何值。 使用model.fit时,训练将自动适当地设置为True。


将输入展平。不影响批量大小。注意:如果输入的形状是(batch,)没有特征轴,则展平会增加通道尺寸,而输出的形状是(batch, 1)。


将输入重新调整为特定的尺寸


将任意表达式封装为Layer对象。在Lambda层,以便在构造模型时可以使用任意TensorFlow函数。 Lambda层最适合简单操作或快速实验。 Lambda层是通过序列化Python字节码来保存的。


使用覆盖值覆盖序列,以跳过时间步。

对于输入张量的每一个时间步(张量的第一个维度),如果所有时间步中输入张量的值与mask_value相等,则将在所有下游层中屏蔽(跳过)该时间步。如果任何下游层不支持覆盖但仍然收到此类输入覆盖信息,会引发异常。

举例说明:


Embedding 是一个将离散变量转为连续向量表示的一个方式。该层只能用作模型中的第一层。

Embedding 有以下3个主要目的: 在 embedding 空间中查找最近邻,这可以很好的用于根据用户的兴趣来进行推荐。 作为监督性学习任务的输入。 用于可视化不同离散变量之间的关系.

举例说明:

输出结果:


由维基网络的介绍我们可以得知,卷积是一种定义在两个函数(𝑓跟𝑔)上的数学操作,旨在产生一个新的函数。那么𝑓和𝑔的卷积就可以写成𝑓∗𝑔,数学定义如下:

对应到不同方面,卷积可以有不同的解释:𝑔 既可以看作我们在深度学习里常说的核(Kernel),也可以对应到信号处理中的滤波器(Filter)。而 𝑓 可以是我们所说的机器学习中的特征(Feature),也可以是信号处理中的信号(Signal)。f和g的卷积 (𝑓∗𝑔)就可以看作是对𝑓的加权求和。

一维时域卷积操作:

二维图像卷积操作:

卷积运算的目的是提取输入的不同特征,第一层卷积层可能只能提取一些低级的特征如边缘、线条和角等层级,更多层的网路能从低级特征中迭代提取更复杂的特征。

一维卷积层(即时域卷积),用以在一维输入信号上进行邻域滤波。

举例说明:

结果输出:


2D 卷积层 (例如对图像的空间卷积)。

举例说明:

结果输出:


3D卷积层(例如体积上的空间卷积)

举例说明:

结果输出:


深度可分离1D卷积。该层执行分别作用在通道上的深度卷积,然后是混合通道的逐点卷积。 如果use_bias为True并提供了一个偏差初始值设定项,则它将偏差向量添加到输出中。 然后,它可选地应用激活函数以产生最终输出。


深度可分离的2D卷积。可分离的卷积包括首先执行深度空间卷积(它分别作用于每个输入通道),然后是点向卷积,它将混合所得的输出通道。 depth_multiplier参数控制在深度步骤中每个输入通道生成多少个输出通道。

直观上,可分离的卷积可以理解为将卷积内核分解为两个较小内核的一种方式,或者是Inception块的一种极端版本。


转置卷积层 (有时被成为反卷积)。对转置卷积的需求一般来自希望使用 与正常卷积相反方向的变换,将具有卷积输出尺寸的东西 转换为具有卷积输入尺寸的东西, 同时保持与所述卷积相容的连通性模式。



池化层是模仿人的视觉系统对数据进行降维,用更高层次的特征表示图像。实施池化的目的:降低信息冗余;提升模型的尺度不变性、旋转不变性。 防止过拟合。

通常有最大池化层,平均池化层。

池化层有三种形态:1D 用于一维数据,2D 一般用于二维图像数据,3D 带时间序列数据的图像数据



循环神经网络(Recurrent Neural Network, 简称 RNN),循环神经网络的提出便是基于记忆模型的想法,期望网络能够记住前面出现的特征,并依据特征推断后面的结果,而且整体的网络结构不断循环,因此得名为循环神经网络。

长短期记忆网络(Long-Short Term Memory, LSTM )论文首次发表于1997年。由于独特的设计结构,LSTM适合于处理和预测时间序列中间隔和延迟非常长的重要事件。

举例说明:

结果输出:


GRU 门控循环单元- Cho et al. 2014.

在LSTM中引入了三个门函数:输入门、遗忘门和输出门来控制输入值、记忆值和输出值。而在GRU模型中只有两个门:分别是更新门和重置门。与LSTM相比,GRU内部少了一个”门控“,参数比LSTM少,但是却也能够达到与LSTM相当的功能。考虑到硬件的计算能力和时间成本,因而很多时候我们也就会选择更加”实用“的GRU。

举例说明:

结果输出:


循环神经网络层基类。

关于指定 RNN 初始状态的说明
您可以通过使用关键字参数 initial_state 调用它们来符号化地指定 RNN 层的初始状态。 initial_state 的值应该是表示 RNN 层初始状态的张量或张量列表。
可以通过调用带有关键字参数 states 的 reset_states 方法来数字化地指定 RNN 层的初始状态。 states 的值应该是一个代表 RNN 层初始状态的 Numpy 数组或者 Numpy 数组列表。

关于给 RNN 传递外部常量的说明
可以使用 RNN. call (以及 RNN.call)的 constants 关键字参数将“外部”常量传递给单元。 这要求 cell.call 方法接受相同的关键字参数 constants。 这些常数可用于调节附加静态输入(不随时间变化)上的单元转换,也可用于注意力机制。

举例说明:



在训练模型之前,我们需要配置学习过程,这是通过compile方法完成的。

他接收三个参数:优化器 opt

⑧ 人工智能:什么是人工神经网络

许多 人工智能 计算机系统的核心技术是人工神经网络(ANN),而这种网络的灵感来源于人类大脑中的生物结构。

通过使用连接的“神经元”结构,这些网络可以通过“学习”并在没有人类参与的情况下处理和评估某些数据。

这样的实际实例之一是使用人工神经网络(ANN)识别图像中的对象。在构建一个识别“猫“图像的一个系统中,将在包含标记为“猫”的图像的数据集上训练人工神经网络,该数据集可用作任何进行分析的参考点。正如人们可能学会根据尾巴或皮毛等独特特征来识别狗一样,人工神经网络(ANN)也可以通过将每个图像分解成不同的组成部分(如颜色和形状)进行识别。

实际上,神经网络提供了位于托管数据之上的排序和分类级别,可基于相似度来辅助数据的聚类和分组。可以使用人工神经网络(ANN)生成复杂的垃圾邮件过滤器,查找欺诈行为的算法以及可以精确了解情绪的客户关系工具。

人工神经网络如何工作

人工神经网络的灵感来自人脑的神经组织,使用类似于神经元的计算节点构造而成,这些节点沿着通道(如神经突触的工作方式)进行信息交互。这意味着一个计算节点的输出将影响另一个计算节点的处理。

神经网络标志着人工智能发展的巨大飞跃,在此之前,人工智能一直依赖于使用预定义的过程和定期的人工干预来产生所需的结果。人工神经网络可以使分析负载分布在多个互连层的网络中,每个互连层包含互连节点。在处理信息并对其进行场景处理之后,信息将传递到下一个节点,然后向下传递到各个层。这个想法是允许将其他场景信息接入网络,以通知每个阶段的处理。

单个“隐藏”层神经网络的基本结构

就像渔网的结构一样,神经网络的一个单层使用链将处理节点连接在一起。大量的连接使这些节点之间的通信得到增强,从而提高了准确性和数据处理吞吐量。

然后,人工神经网络将许多这样的层相互叠放以分析数据,从而创建从第一层到最后一层的输入和输出数据流。尽管其层数将根据人工神经网络的性质及其任务而变化,但其想法是将数据从一层传递到另一层,并随其添加附加的场景信息。

人脑是用3D矩阵连接起来的,而不是大量堆叠的图层。就像人类大脑一样,节点在接收到特定刺激时会在人工神经网络上“发射”信号,并将信号传递到另一个节点。但是,对于人工神经网络,输入信号定义为实数,输出为各种输入的总和。

这些输入的值取决于它们的权重,该权重用于增加或减少与正在执行的任务相对应的输入数据的重要性。其目标是采用任意数量的二进制数值输入并将其转换为单个二进制数值输出。

更复杂的神经网络提高了数据分析的复杂性

早期的神经网络模型使用浅层结构,其中只使用一个输入和输出层。而现代的系统由一个输入层和一个输出层组成,其中输入层首先将数据输入网络,多个“隐藏”层增加了数据分析的复杂性。

这就是“深度学习”一词的由来——“深度”部分专门指任何使用多个“隐藏”层的神经网络。

聚会的例子

为了说明人工神经网络在实际中是如何工作的,我们将其简化为一个实际示例。

想象一下你被邀请参加一个聚会,而你正在决定是否参加,这可能需要权衡利弊,并将各种因素纳入决策过程。在此示例中,只选择三个因素——“我的朋友会去吗?”、“聚会地点远吗?”、“天气会好吗?”

通过将这些考虑因素转换为二进制数值,可以使用人工神经网络对该过程进行建模。例如,我们可以为“天气”指定一个二进制数值,即‘1'代表晴天,‘0'代表恶劣天气。每个决定因素将重复相同的格式。

然而,仅仅赋值是不够的,因为这不能帮助你做出决定。为此需要定义一个阈值,即积极因素的数量超过消极因素的数量。根据二进制数值,合适的阈值可以是“2”。换句话说,在决定参加聚会之前,需要两个因素的阈值都是“1”,你才会决定去参加聚会。如果你的朋友要参加聚会(‘1'),并且天气很好(‘1'),那么这就表示你可以参加聚会。

如果天气不好(‘0'),并且聚会地点很远(‘0'),则达不到这一阈值,即使你的朋友参加(‘1'),你也不会参加聚会。

神经加权

诚然,这是神经网络基本原理的一个非常基本的例子,但希望它有助于突出二进制值和阈值的概念。然而,决策过程要比这个例子复杂得多,而且通常情况下,一个因素比另一个因素对决策过程的影响更大。

要创建这种变化,可以使用“神经加权”——-通过乘以因素的权重来确定因素的二进制值对其他因素的重要性。

尽管示例中的每个注意事项都可能使你难以决策,但你可能会更重视其中一个或两个因素。如果你不愿意在大雨中出行去聚会,那恶劣的天气将会超过其他两个考虑因素。在这一示例中,可以通过赋予更高的权重来更加重视天气因素的二进制值:

天气= w5

朋友= w2

距离= w2

如果假设阈值现在已设置为6,则恶劣的天气(值为0)将阻止其余输入达到所需的阈值,因此该节点将不会“触发”(这意味着你将决定不参加聚会)。

虽然这是一个简单的示例,但它提供了基于提供的权重做出决策的概述。如果要将其推断为图像识别系统,则是否参加聚会(输入)的各种考虑因素将是给定图像的折衷特征,即颜色、大小或形状。例如,对识别狗进行训练的系统可以对形状或颜色赋予更大的权重。

当神经网络处于训练状态时,权重和阈值将设置为随机值。然后,当训练数据通过网络传递时将不断进行调整,直到获得一致的输出为止。

神经网络的好处

神经网络可以有机地学习。也就是说,神经网络的输出结果并不受输入数据的完全限制。人工神经网络可以概括输入数据,使其在模式识别系统中具有价值。

他们还可以找到实现计算密集型答案的捷径。人工神经网络可以推断数据点之间的关系,而不是期望数据源中的记录是明确关联的。

它们也可以是容错的。当神经网络扩展到多个系统时,它们可以绕过无法通信的缺失节点。除了围绕网络中不再起作用的部分进行路由之外,人工神经网络还可以通过推理重新生成数据,并帮助确定不起作用的节点。这对于网络的自诊断和调试非常有用。

但是,深度神经网络提供的最大优势是能够处理和聚类非结构化数据,例如图片、音频文件、视频、文本、数字等数据。在分析层次结构中,每一层节点都在前一层的输出上进行训练,深层神经网络能够处理大量的这种非结构化数据,以便在人类处理分析之前找到相似之处。

神经网络的例子

神经网络应用还有许多示例,可以利用它从复杂或不精确数据中获得见解的能力。

图像识别人工神经网络可以解决诸如分析特定物体的照片等问题。这种算法可以用来区分狗和猫。更重要的是,神经网络已经被用于只使用细胞形状信息来诊断癌症。

近30年来,金融神经网络被用于汇率预测、股票表现和选择预测。神经网络也被用来确定贷款信用评分,学习正确识别良好的或糟糕的信用风险。而电信神经网络已被电信公司用于通过实时评估网络流量来优化路由和服务质量。

⑨ 如何用 Python 构建神经网络择时模型

生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。
人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
人工神经网络:是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为“神经网络”或类神经网络。

⑩ 什么是BP神经网络

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下:
1、从训练集中取出某一样本,把信息输入网络中。
2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。
3、计算网络实际输出与期望输出的误差。
4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。
5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。

阅读全文

与如何创建人工神经网络模型相关的资料

热点内容
网络共享中心没有网卡 浏览:493
电脑无法检测到网络代理 浏览:1350
笔记本电脑一天会用多少流量 浏览:477
苹果电脑整机转移新机 浏览:1349
突然无法连接工作网络 浏览:962
联通网络怎么设置才好 浏览:1192
小区网络电脑怎么连接路由器 浏览:934
p1108打印机网络共享 浏览:1187
怎么调节台式电脑护眼 浏览:604
深圳天虹苹果电脑 浏览:841
网络总是异常断开 浏览:584
中级配置台式电脑 浏览:895
中国网络安全的战士 浏览:606
同志网站在哪里 浏览:1380
版观看完整完结免费手机在线 浏览:1432
怎样切换默认数据网络设置 浏览:1081
肯德基无线网无法访问网络 浏览:1255
光纤猫怎么连接不上网络 浏览:1377
神武3手游网络连接 浏览:938
局网打印机网络共享 浏览:976