1. 网络收敛详解
网络收敛性
由于一个路由项的改变,网络山局中的所有结点全部更新它们的路卜滚由表所需时间。
相关内容:路由型唯余协议的收敛性
2. 网络中的收敛速度是什么意思
数据报文的流纯知量收敛,是指数据报文在网络转发过程中由于架构、设备等非故障原因而不能实现线速无丢包转发。在流量收敛明裤颤时,网络设备会有部分端口拥塞,进而丢弃部分报文。
造成网络流量收敛的原因主要有两个:交换机不支持线速转发,在交换机内部可能形成流量收敛;网络架构设计不当,无论交换机是否线激败速,转发报文时也会存在流量收敛。
ž
交换机非线速导致的收敛指:某交换机只具有8Gbps线速转发的交换能力,某时刻从交换机输入的12个接口向输出的12个接口同时转发流量,当每个接口流量均跑满1Gbps时,在交换机内部一定会有拥塞,此时便形成了转发的收敛。实际每秒交换机接收流量为12Gbps,但转发出去的报文只有8Gbps,收敛比为输入带宽(12Gbps)÷输出带宽(8Gbps)=3:2。
网络设计不当导致的收敛指:若4台服务器分别通过千兆链路连接接入交换机,接入交换机通过1条千兆链路连接核心交换机。即接入交换机的下行带宽为4Gbps,接入交换机的上行带宽为1Gbps,为非对称链路,下上行链路收敛比为下行带宽(4Gbps)÷上行带宽(1Gbps)=4:1。
较小的收敛比才能保证较高的网络的传输效率。
3. 生成式对抗网络GAN(一)
上面这张图很好的很好的阐述了生成式对抗网络的结构~~ 博弈论
此图给出了生成性对抗网络的概述。目前最重要的是要理解GAN是使两个网络协同工作的一种方式 - 而Generator和Discriminator都有自己的架构。为了更好地理解这个想法的来源,我们需要回忆一些基本的代数并问自己 - 我们怎么能欺骗一个比大多数人更好地分类图像的神经网络?
在我们详细描述GAN之前,让我们看一下类似的主题。给定一个训练有素的分类器,我们可以生成一个欺骗网络的样本吗?如果我们这样做,它会是什么样子?
事实证明,我们可以。
甚至更多 - 对于几乎任何给定的图像分类器,可以将图像变换为另一个图像,这将被高度置信地错误分类,同时在视觉上与原始图像无法区分!这种过程称为对抗性攻击,生成方法的简单性解释了很多关于GAN的内容。
精心计算的示例中的对抗性示例,其目的是错误分类。以下是此过程的说明。左边的熊猫与右边的熊猫无法区分 - 但它被归类为长臂猿。
图像分类器本质上是高维空间中的复杂决策边界。当然,在对图像进行分类时,我们无法绘制这个边界。但我们可以安全地假设,当训练结束时,网络并不是针对所有图像进行推广的 - 仅针对我们在训练集中的那些图像。这种概括可能不是现实生活的良好近似。换句话说,它适用于我们的数据 - 我们将利用它。
让我们开始为图像添加随机噪声并使其非常接近零。我们可以通过控制噪声的L2范数来实现这一点。数学符号不应该让您担心 - 出于所有实际目的,您可以将L2范数视为向量的长度。这里的诀窍是你在图像中拥有的像素越多 - 它的平均L2范数就越大。因此,如果噪声的范数足够低,您可以预期它在视觉上难以察觉,而损坏的图像将远离矢量空间中的原始图像。
为什么?
好吧,如果HxW图像是矢量,那么我们添加到它的HxW噪声也是矢量。原始图像具有相当密集的各种颜色 - 这增加了L2规范。另一方面,噪声是一组视觉上混乱的相当苍白的像素 - 一个小范数的矢量。最后,我们将它们添加到一起,为损坏的图像获取新的矢量,这与原始图像相对接近 - 但却错误分类!
现在,如果原始类 Dog 的决策边界不是那么远(就L2范数而言),这种加性噪声将新图像置于决策边界之外。
您不需要成为世界级拓扑学家来理解某些类别的流形或决策边界。由于每个图像只是高维空间中的矢量,因此在其上训练的分类器将“所有猴子”定义为“由隐藏参数描述的该高维斑点中的所有图像矢量”。我们将该blob称为该类的决策边界。
好的,所以,你说我们可以通过添加随机噪声轻松欺骗网络。它与生成新图像有什么关系?
现在我们假设有两个结构模型,相当于两个神经网络:
这是关于判别网络D和生成网络G的价值函数(Value Function),训练网络D使得最大概率地分对训练样本的标签(最大化log D(x)),训练网络G最小化log(1 – D(G(z))),即最大化D的损失。训练过程中固定一方,更新另一个网络的参数,交替迭代,使得对方的错误最大化,最终,G 能估测出样本数据的分布。生成模型G隐式地定义了一个概率分布Pg,我们希望Pg 收敛到数据真实分布Pdata。论文证明了这个极小化极大博弈当且仅当Pg = Pdata时存在最优解,即达到纳什均衡,此时生成模型G恢复了训练数据的分布,判别模型D的准确率等于50%。
接着上面最后一个问题:怎么才能生成我指定的图像呢?
指定标签去训练
顾名思义就是把标签也带进公式,得到有条件的公式:
具体怎么让CGAN更好的优化,这里不解释,就是平常的优化网络了。
参考文章:
本文大部分翻译此外文
通俗易懂
小博客的总结
唐宇迪大神
4. 什么是网络“收敛”
数据报文的流量收敛,是指数据报文在网络转发过程中由于架构、设备等非故障原因而不能实现线速无丢包转祥携发。在流量收敛时,网络设备会有部分端口拥塞,进而丢弃部分报文。
当某个网络事件引起路由可用或不可用时,路由器就发出更新信息。路由更新信息遍及整个网络,引发重新计算最佳路径,最终达到所有路由器一致公认的最佳路径。
这个过程即称为收敛。收敛时间指从网络发生变化开始直到所有路由器识别到变化并针对该变化作出适应为止的这段时间。
(4)为什么对抗生成网络会收敛扩展阅读:
收敛慢的路由算法会造成路径循环或网络中断。收敛过程既具协作性,又具独立性。路由器之间既需要共享谈段路由信息,各个路由器也必须独立计算拓扑结构变化对各自路由过程所产生的影响。由于路由器独立更新网络信息以与拓扑结构保持一致。
也可以说路由器通过收敛来达成一致。收敛的有关属性包括路由信息的传播速度以及最佳路径的计算方法。可以根据收敛速度来评估路由协议。收敛速度含宴誉越快,路由协议的性能就越好。通常,RIP和IGRP收敛较慢,而EIGRP、OSPF和IS-IS收敛较快。
5. GAN生成对抗网络(一)
GAN(Generative Adversarial Networks)是两个网络的的组合, 一个网络生成模拟数据, 另一个网络判断生成的数据是真实的还是模拟的。生成模拟数据的网络要不断优化自己让判别的网络判断不出来, 判别的网络也要优化自己让自己判断得更准确。 二者关系形成对抗博弈,因此叫 对抗神经网络 (生成对抗网络)。实验证明, 利用这种网络间的对抗关系所形成的网络, 在无监督及半监督领域取得了很好的效果, 可以算是用网络来监督网络的一个自学习过程。在GAN发明之前,变分自编码器被认为是理论完美、实现简单,使用神经网络训练起来很稳定, 生成的图片逼近度也较高, 但是人类还是可以很轻易地分辨出真实图片与机器生成的图片。
生成对抗网络包含了 2 个子网络: 生成网络(Generator, G)和判别网络(Discriminator,D), 其中生成网络负责学习样本的真实分布,判别网络负责将生成网络采样的样本与真实样本区分开来。
生成网络 G(𝐳) 生成网络 G 和自编码器的 Decoder 功能类似, 从先验分布 中采样隐藏变量 ,通过生成网络 G 参数化的 分布, 获得生成样本 ,如下图所示。 其中隐藏变量𝒛的先验分布 可以假设属于某中已知的分布,比如多元均匀分布 。
可以用深度神经网络来参数化, 如下图所示, 从均匀分布 中采样出隐藏变量𝒛, 经过多层转置卷积层网络参数化的 分布中采样出样本 。
判别网络 D(𝒙) 判别网络和普通的二分类网络功能类似,它接受输入样本𝒙,包含了采样自真实数据分布 的样本 ,也包含了采样自生成网络的假样本 , 和 共同组成了判别网络的训练数据集。判别网络输出为𝒙属于真实样本的概率 ,我们把所有真实样本 的标签标注为1,所有生成网络产生的样本 标注为0, 通过最小化判别网络预测值与标签之间的误差来优化判别网络参数。
我们的目标很明确, 既要不断提升判断器辨别真假图像样本的能力, 又要不断提升生成器生成更加逼真的图像,使判别器越来越难判别。
对于判别网络 D ,它的目标是能够很好地分辨出真样本 与假样本 。即最小化图片的预测值和真实值之间的交叉熵损失函数:
其中 代表真实样本 在判别网络 的输出, 为判别网络的参数集, 为生成样本 在判别网络的输出, 为 的标签,由于真实样本标注为真,故 , 为生成样本的 的标签,由于生成样本标注为假,故 。 根据二分类问题的交叉熵损失函数定义:
因此判别网络的优化目标是:
去掉 中的负号,把 问题转换为 问题,并写为期望形式:
对于生成网络G(𝒛) ,我们希望 能够很好地骗过判别网络 , 假样本 在判别网络的输出越接近真实的标签越好。也就是说,在训练生成网络时, 希望判别网络的输出 越逼近 1 越好,此时的交叉熵损失函数:
把 问题转换为 问题,并写为期望形式:
再等价转化为:
GAN的优化过程不像通常的求损失函数的最小值, 而是保持生成与判别两股力量的动态平衡。 因此, 其训练过程要比一般神经网络难很多。
把判别网络的目标和生成网络的目标合并,写成min-max形式:
原GAN论文中:
这里为了好理解,把各个符号梳理的更清晰了,注意符号和网络参数的对应。
理想情况下 , 会有更精确的鉴别真伪数据的能力,经过大量次数的迭代训练会使 尽可能模拟出以假乱真的样本, 最终整个GAN会达到所谓的纳什均衡, 即 对于生成样本和真实样本鉴别结果为正确率和错误率各占50%。下面具体从理论层面来推导。
现在从理论层面进行分析, 通过博弈学习的训练方式,生成器 G 和判别器 D 分别会达到什么状态。 具体地,来看以下 2 个问题:
首先我们通过 一维正态分布的例子给出一个直观的解释,如下图所示,黑色虚线曲线代表了真实数据的分布 , 为某正态分布 , 绿色实线代表了生成网络学习到的分布 , 蓝色虚线代表了判别器的决策边界曲线, 图中(a)(b)(c)(d)分别代表了生成网络的学习轨迹。在初始状态,如图 (a)所示, 分布与 差异较大,判别器可以很轻松地学习到决策边界,即图(a)中的蓝色虚线,将来自 的采样点判定为 0, 中的采样点判定为 1。 随着生成网络的分布 越来越逼近真实分布 ,判别器越来越困难将真假样本区分开,如图 (b)(c)所示。 最后,生成网络性能达到最佳,学习到的分布 ,此时从生成网络中采样的样本非常逼真, 判别器无法区分,即判定为真假样本的概率均等,如图(d)所示。
固定生成器G的参数 ,判别器D最佳能达到的状态:
证明: 对于给定的生成器G,要让判别器D达到最优,我们的目标是最大化损失函数,其积分形式为:
对于给定的 ,真实分布始终是固定的,所以 和 都是定值,于是对于判别器D,要找出
的最大值,其中 是判别器网络参数,对于函数 ,不难得到 在 处取得极大值且是最大值。因此可得 的极值点也为
故判别器 能达到的最佳状态为定理中给出的式子。
现在考虑第二个问题。
JS 散度(Jensen–Shannon divergence)
对于KL散度, ,是不对称的。但JS散度是对称的。
当 达到 时,考虑此时 和 的 散度:
考虑到判别网络到达 时,此时的损失函数为:
于是我们可以得到:
对于生成网络 而言,目标是最小化损失函数,由于 ,因此 取得最小值仅在 时(此时 ), 取得最小值:
此时生成网络达到 状态是:
即 的学到的分布 与真实分布 一致,网络达到纳什均衡点,此时:
即对于生成器生成的图像有0.5的概率被判定为真,也有0.5的概率被判定为假。
6. 什么是生成对抗网络
生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的输出。原始 GAN 理论中,并不要求 G 和 D 都是神经网络,只需要是能拟合相应生成和判别的函数即可。但实用中一般均使用深度神经网络作为 G 和 D 。一个优秀的GAN应用需要有良好的训练方法,否则可能由于神经网络模型的自由性而导致输出不理想。