导航:首页 > 网络问题 > 神经网络学习率怎么设置

神经网络学习率怎么设置

发布时间:2023-07-20 11:10:41

① 神经网络中学习率、批处理样本数量、迭代次数有什么意义和影响

学习率是指每次训练过程中(迭代)变量改变(更新)的比率,例如x(t+1) = x(t) - a * delta
其中a可以看出学习率,一般在0 - 1之间,相当于步长,而delta相当于方向。
批处理样本数量,标准的BP是单样本学习的方法,例如图片识别,第一个图是猫,然后输入图像,网络学习一次(变量更新一次),学习到图片的特征,然后再输入第二个图片狗,在前面的基础上再学习。 而批训练,就是说两个图片一起输入后,计算两个样本学习的平均的误差(Loss), 从整体上来学习整个训练样本集合,这样的学习对于大样本数据更加有效率。
迭代次数就是学习的次数了,每次迭代就是向最优点前进的一小步,神经网络要学习到样本的特征,那就要一步一步地走,走了很多步才能到达符合精度地地点,所以需要学习很多次。

② 神经网络超参数选择

深度学习模型通常由随机梯度下降算法进行训练。随机梯度下降算法有许多变形:例如 Adam、RMSProp、Adagrad 等等。这些算法都需要你设置学习率。学习率决定了在一个小批量(mini-batch)中权重在梯度方向要移动多远。

如果学习率很低,训练会变得更加可靠,但是优化会耗费较长的时间,因为朝向损失函数最小值的每个步长很小。
如果学习率很高,训练可能根本不会收敛,损失函数一直处于波动中,甚至会发散。权重的改变量可能非常大,使得优化越过最小值,使得损失函数变得更糟。

训练应当从相对较大的学习率开始。这是因为在开始时,初始的随机权重远离最优值。在训练过程中,学习率应当下降,以允许细粒度的权重更新。

参考: https://www.jiqixin.com/articles/2017-11-17-2

批次大小是每一次训练神经网络送入模型的样本数。在 合理的范围之内 ,越大的 batch size 使下降方向越准确,震荡越小,通常取值为[16,32,64,128]。

Batch_Size=全部数据集 缺点:
1) 随着数据集的海量增长和内存限制,一次性载入所有的数据进来变得越来越不可行。
2) 以 Rprop 的方式迭代,会由于各个 Batch 之间的采样差异性,各次梯度修正值相互抵消,无法修正。
Batch_Size = 1 缺点:
使用在线学习,每次修正方向以各自样本的梯度方向修正,横冲直撞各自为政,难以达到收敛。

在合理范围内,增大 Batch_Size 有何好处?
1) 内存利用率提高了,大矩阵乘法的并行化效率提高。
2) 跑完一次 epoch(全数据集)所需的迭代次数减少,对于相同数据量的处理速度进一步加快。
3) 在一定范围内,一般来说 Batch_Size 越大,其确定的下降方向越准,引起训练震荡越小。

盲目增大 Batch_Size 有何坏处?
1) 内存利用率提高了,但是内存容量可能撑不住了。
2) 跑完一次 epoch(全数据集)所需的迭代次数减少,要想达到相同的精度,其所花费的时间大大增加了,从而对参数的修正也就显得更加缓慢。
3) Batch_Size 增大到一定程度,其确定的下降方向已经基本不再变化。

参考: https://blog.csdn.net/juronghui/article/details/78612653

迭代次数是指整个训练集输入到神经网络进行训练的次数,当测试错误率和训练错误率相差较小,且测试准确率趋于稳定时(达到最优),可认为当前迭代次数合适;当测试错误率先变小后变大时则说明迭代次数过大了,需要减小迭代次数,否则容易出现过拟合。

用激活函数给神经网络加入一些非线性因素,使得网络可以更好地解决较为复杂的问题。参考: https://blog.csdn.net/tyhj_sf/article/details/79932893

它能够把输入的连续实值变换为0和1之间的输出。
缺点:
1) 在深度神经网络中梯度反向传递时导致梯度爆炸和梯度消失,其中梯度爆炸发生的概率非常小,而梯度消失发生的概率比较大。
2) Sigmoid 的 output 不是0均值,使得收敛缓慢。batch的输入能缓解这个问题。

它解决了Sigmoid函数的不是zero-centered输出问题,然而梯度消失的问题和幂运算的问题仍然存在。
tanh函数具有中心对称性,适合于有对称性的二分类

虽然简单,但却是近几年的重要成果,有以下几大优点:
1) 解决了梯度消散问题 (在正区间)
2)计算速度非常快,只需要判断输入是否大于0
3)收敛速度远快于sigmoid和tanh
ReLU也有几个需要特别注意的问题:
1)ReLU的输出不是zero-centered
2)Dead ReLU Problem,指的是某些神经元可能永远不会被激活,导致相应的参数永远不能被更新。有两个主要原因可能导致这种情况产生: (1) 非常不幸的参数初始化,这种情况比较少见 (2) learning rate太高导致在训练过程中参数更新太大,不幸使网络进入这种状态。解决方法是可以采用Xavier初始化方法,以及避免将learning rate设置太大或使用adagrad等自动调节learning rate的算法。

为了解决Dead ReLU Problem,提出了将ReLU的前半段设为 αx 而非 0 ,如 PReLU 。

1)深度学习往往需要大量时间来处理大量数据,模型的收敛速度是尤为重要的。所以,总体上来讲,训练深度学习网络尽量使用zero-centered数据 (可以经过数据预处理实现) 和zero-centered输出。所以要尽量选择输出具有zero-centered特点的激活函数以加快模型的收敛速度。
2)如果使用 ReLU,那么一定要小心设置 learning rate,而且要注意不要让网络出现很多 “dead” 神经元,如果这个问题不好解决,那么可以试试 Leaky ReLU、PReLU 或者 Maxout.
3)最好不要用 sigmoid,你可以试试 tanh,不过可以预期它的效果会比不上 ReLU 和 Maxout.

公式: https://www.cnblogs.com/xiaobingqianrui/p/10756046.html
优化器比较: https://blog.csdn.net/weixin_40170902/article/details/80092628

③ BP神经网络中学习速率如何确定

学习率的作用是不断调整权值阈值。
对于traingdm等函数建立的BP网络,学习速率一般取0.01-0.1之间。

④ 神经网络BP算法中,如何选择网络学习效率及阈值调整效率

学习效率一般取0~1之间的数如:0.1,0.4,网络初始化阈值赋值(0,1)区间内随机数,之后通过神经网络训练不断调整。楼主只用调整学习效率就行了

阅读全文

与神经网络学习率怎么设置相关的资料

热点内容
网络共享中心没有网卡 浏览:512
电脑无法检测到网络代理 浏览:1363
笔记本电脑一天会用多少流量 浏览:532
苹果电脑整机转移新机 浏览:1367
突然无法连接工作网络 浏览:1014
联通网络怎么设置才好 浏览:1212
小区网络电脑怎么连接路由器 浏览:989
p1108打印机网络共享 浏览:1201
怎么调节台式电脑护眼 浏览:650
深圳天虹苹果电脑 浏览:889
网络总是异常断开 浏览:602
中级配置台式电脑 浏览:947
中国网络安全的战士 浏览:622
同志网站在哪里 浏览:1402
版观看完整完结免费手机在线 浏览:1448
怎样切换默认数据网络设置 浏览:1098
肯德基无线网无法访问网络 浏览:1274
光纤猫怎么连接不上网络 浏览:1427
神武3手游网络连接 浏览:955
局网打印机网络共享 浏览:990