⑴ 如何快速部署一个机器学习在线预测系统
快速部署一个机器学习在线预测系统。主要分为以下三个步骤:
第一步:构建机器学习应用容器镜像
第二步:在平台上注册及部署机器学习应用
第三步:使用机器学习系统在线预测
⑵ 如何开始使用 Java 机器学习
说到如何开始使用 Java 机器学习这个问题,相信对于从事Java开发的人来说是非常重要的,也是这段时间几乎每个人都在谈论人工智能和机器学习,这已经不再是一个保留给科学家和研究者的秘密,而是几乎实现于每一项新兴技术中。
人类的人工智能人工智能在一段时间以来是一个广泛并且炫酷的领域,但总是感觉有点难以触及,是特意为科学家所做。如果你想创造一个人工智能系统,你必须实现你自己的核心算法,并且训练它们能识别模式,理解图像并且处理自然语言。
那么,如何使用 Java 机器学习,提升应用的机器学习能力呢?
让机器运转为了更简单的阐述,以下几个项目可以帮助你:
1.Deeplearning4J (DL4J) –开源,分布式,JVM的商业深度学习lib库
2. BID Data Project –能够运行快速、大规模的机器学习和数据挖掘的模式集合
3. Neuroph –面向对象的神经网络
DL4J – 深度学习
DL4J是一个能帮助你配置多层神经网络的工具。它为JVM提供了深度学习且伴随快速原型设计和大规模定制,同时注重比配置更多的约定。DL4J 是由Java语言编写的,可以兼容任何JVM语言。
BID Data Project (大数据项目)
大数据项目是由那些需要处理大量数据并且对性能敏感的人创建的。 UC Berkeley项目是由许多硬件、软件和设计模式集合而成,能在上使用快速、大规模的数据挖掘。
Neuroph
neuroph是用来开发常用的神经网络构架的轻量级java框架。该框架提供了一个java库以及一个GUI工具(称为easyNeurons),你可以用它来在java项目中创建和训练自己的神经网络。
总结:每隔几年就会有些关于人工智能的新声音。这一次,它伴随着机器学习,数据挖掘,神经网络等等的强化来了,我们都很支持。这些类库开源的事实意味着这些信息和能力正待价而沽,而你所有所做的是思考拥有这个能力可以做成什么。
⑶ 如何搭建机器学习平台
在机器学习和模式识别等领域中,一般需要将样本分成独立的三部分训练集(train set),验证集(validation set ) 和测试集(test set)。其中训练集用来估计模型,验证集用来确定网络结构或者控制模型复杂程度的参数,而测试集则检验最终选择最优的模型的性能如何。一个典型的划分是训练集占总样本的50%,而其它各占25%,三部分都是从样本中随机抽取。
⑷ 如何建立一个合理的机器学习系统
Programming Libraries 编程库资源
我是一个“学习要敢于冒险和尝试”观念的倡导者。这是我学习编程的方式,我相信很多人也是这样学习程序设计的。先了解你的能力极限,然后去拓展你的能力。如果你了解如何编程,可以将编程经验很快借鉴到深入学习机器学习上。在你实现一个实际的产品系统之前,你必须遵循一些规则、学习相关数学知识。
找到一个库并且仔细阅读相关文档,根据教程,开始尝试实现一些东西。下面列出的是开源的机器学习库中最好的几种。我认为,并不是他们中的每一种都适合用在你的系统中,但是他们是你学习、探索和实验的好材料。
你可以从一个由你熟悉的语言编写的库开始学习,然后再去学习其他功能强大的库。如果你是一个优秀的程序员,你会知道怎样从一种语言,简单合理地迁移到另一种语言。语言的逻辑都是相同的,只是语法和API稍有不同。
R Project for Statistical Computing:这是一个开发环境,采用一种近似于Lisp的脚本语言。在这个库中,所有你想要的与统计相关的功能都通过R语言提供,包括一些复杂的图标。CRAN(你可以认为是机器学弟的第三方包)中的机器学习目录下的代码,是由统计技术方法和其他相关领域中的领军人物编写的。如果你想做实验,或是快速拓展知识,R语言都是必须学习的。但它可能不是你学习的第一站。
WEKA:这是一个数据挖掘工作平台,为用户提供数一系列据挖掘全过程的API、命令行和图形化用户接口。你可以准备数据、可视化、建立分类、进行回归分析、建立聚类模型,同时可以通过第三方插件执行其他算法。
Mahout是Hadoop中为机器学习提供的一个很好的JAVA框架,你可以自行学习。如果你是机器学习和大数据学习的新手,那么坚持学习WEKA,并且全心全意地学习一个库。
Scikit Learn:这是用Python编写的,基于NumPy和SciPy的机器学习库。如果你是一个Python或者Ruby语言程序员,这是适合你用的。这个库很用户接口友好,功能强大,并且配有详细的文档说明。如果你想试试别的库,你可以选择Orange。
Octave:如果你很熟悉MatLab,或者你是寻求改变的NumPy程序员,你可以考虑 Octave。这是一个数值计算环境,与MatLab像是,借助Octave你可以很方便地解决线性和非线性问题,比如机器学习算法底层涉及的问题。如果你有工程背景,那么你可以由此入手。
BigML:可能你并不想进行编程工作。你完全可以不通过代码,来使用 WEKA那样的工具。你通过使用BigMLS的服务来进行更加深入的工作。BigML通过Web页面,提供了机器学习的接口,因此你可以通过浏览器来建立模型。
补充:
NLTK NLTK is a leading platform for building Python programs to work with human language data. It provides easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet, along with a suite of text processing libraries for classification, tokenization, stemming, tagging, parsing, and semantic reasoning.LingPipe: 是一个自然语言处理的Java开源工具包。LingPipe目前已有很丰富的功能,包括主题分类(Top Classification)、命名实体识别(Named Entity Recognition)、词性标注(Part-of Speech Tagging)、句题检测(Sentence Detection)、查询拼写检查(Query Spell Checking)、兴趣短语检测(Interseting Phrase Detection)、聚类(Clustering)、字符语言建模(Character Language Modeling)、医学文献下载/解析/索引(MEDLINE Download, Parsing and Indexing)、数据库文本挖掘(Database Text Mining)、中文分词(Chinese Word Segmentation)、情感分析(Sentiment Analysis)、语言辨别(Language Identification)等API。
挑选出一个平台,并且在你实际学习机器学习的时候使用它。不要纸上谈兵,要去实践!
Video Courses视频课程
很多人都是通过视频资源开始接触机器学习的。我在YouTube和VideoLectures上看了很多于机器学习相关的视频资源。这样做的问题是,你可能只是观看视频而并不实际去做。我的建议是,你在观看视频的时候,应该多记笔记,及时后来你会抛弃你的笔记。同时,我建议你将学到的东西付诸实践。
坦白讲,我没有看见特别合适初学者的视频资源。视频资源都需要你掌握一定的线性代数、概率论等知识。Andrew Ng在斯坦福的讲解可能是最适合初学者的,下面是我推荐的一些视频资源。
Stanford Machine Learning斯坦福的机器学习课程:可以在Coursera上观看,这门课是由 Andrew Ng讲解的。只要注册,你可以随时观看所有的课程视频,从Stanford CS229 course下载讲义和笔记。这门课包括了家庭作业和小测试,课程主要讲解了线性代数的知识,使用Octave库。
Caltech Learning from Data加利福尼亚理工学院的数据分析课程:你可以在edX上学习这门课程,课程是由Yaser Abu-Mostafa讲解的。所有的课程视频和资料都在加利福尼亚理工学院的网站上。与斯坦福的课程类似,你可以根据自己的情况安排学习进度,完成家庭作业和小论文。它与斯坦福的课程主题相似,关注更多的细节和数学知识。对于初学者来说,家庭作业可能稍有难度。
Machine Learning Category on VideoLectures.Net网站中的机器学习目录:这是个很容易令人眼花缭乱的资源库。你可以找出比较感兴趣的资源,并且深入学习。不要纠结于不适合你的视频,或者对于感兴趣的内容你可以做笔记。我自己会一直重复深入学习一些问题,同时发现新的话题进行学习。此外,在这个网站上你可以发现是这个领域的大师是什么样的。
“Getting In Shape For The Sport Of Data Science” – 由Jeremy Howard讲授:这是与机器学习竞赛者的对话,他们是一些实践中的R语言用户。这是非常珍贵的资源,因为很少有人会讨论研究一个问题的完整过程和究竟怎样做。我曾经幻想过在网上找到一个TV秀,记录机器学习竞赛的全过程。这就是我开始学习机器学习的经历!
Overview Papers综述论文
如果你并不习惯阅读科研论文,你会发现论文的语言非常晦涩难懂。一篇论文就像是一本教科书的片段,但是论文会介绍一个实验或者是领域中其他的前沿知识。然而,如果你准备从阅读论文开始学习机器学习的话,你还是可以找到一些很有意思的文章的。
The Discipline of Machine Learning机器学习中的规则:这是由Tom Mitchell编着的白皮书,其中定义了机器学习的规则。Mitchell在说服CMU总裁为一个百年内都存在的问题建立一个独立的机器学习部门时,也用到了这本书中的观点。
A Few Useful Things to Know about Machine Learning:这是一篇很好的论文,因为它以详细的算法为基础,又提出了一些很重要的问题,比如:选择特征的一般化,模型简化等。
我只是列出了两篇重要的论文,因为阅读论文会让你陷入困境。
Beginner Machine Learning Books给机器学习初学者的书
关于机器学习的书有很多,但是几乎没有为初学者量身定做的。什么样的人才是初学者呢?最有可能的情况是,你从另外一个完全不同的领域比如:计算机科学、程序设计或者是统计学,来到机器学习领域。那么,大部分的书籍要求你有一定的线性代数和概率论的基础。
但是,还有一些书通过讲解最少的算法来鼓励程序员学习机器学习,书中会介绍一些可以使用工具、编程函数库来让程序员尝试。其中最有代表性的书是:《Programming Collective Intelligence》,《Machine Learning for Hackers》,《Hackersand Data Mining: Practical Machine Learning Tools and Techniques》(Python版, R版, 以及Java版)。如果感到迷惑的话,你可以选择其中一本开始学习。
Programming Collective Intelligence: Building Smart Web 2.0 Applications:这本书是为程序员写的。书中简略介绍相关理论,重点以程序为例,介绍web中的实际问题和解决办法。你可以买来这本书,阅读,并且做一些练习。
Machine Learning for Hackers (中文版:机器学习:实用案例解析 ):我建议你在阅读了《Programming Collective Intelligence》一书之后,再阅读这本书。这本书中也提供了很多实践练习,但是涉及更多的数据分析,并且使用R语言。我个人很喜欢这本书!
Machine Learning: An Algorithmic Perspective:这本书是《Programming Collective Intelligence》的高级版本。它们目的相同(让程序员开始了解机器学习),但是这本书包括一些数学知识,参考样例和phython程序片段。如果你有兴趣的话,我建议你在看完《Programming Collective Intelligence》之后来阅读这本书。
数据挖掘:实用机器学习工具与技术(英文版·第3版) :我自己是从这本书开始了解机器学习的,那时是2000年这本书还是第一版。我那时是Java程序员,这本书和WEKA库为我的学习和实践提供了一个很好的环境。我通过这样的平台和一些插件,实现我的算法,并且真正开始实践机器学习和数据挖掘的过程。我强烈推荐这本书,和这样的学习过程。
Machine Learning(中文版:计算机科学丛书:机器学习 ):这是一本很老的书,包括了一些规则和很多参考资料。这是一本教科书,为每个算法提供了相关讲解。
有一些人认为那些经典的机器学习教科书很了不起。 我也赞同,那些书的确非常好。但是,我认为,对于初学者来说,这些书可能并不合适。
Further Reading 继续阅读
在写这篇文章时,我认真思考了相关问题,同时也参考了其他人推荐的资料,以确保我没有遗漏任何重要参考资料。为了确保文章的完整性,下面也列出了一些网上流行的,可以供初学者使用的材料。.
A List of Data Science and Machine Learning Resources:这是一份仔细整理的列表。你可以花一些时间,点击链接,仔细阅读作者的建议。值得一读!
What are some good resources for learning about machine learning Why:这个问题的第一个答案令人吃惊。每次我阅读这篇文章的时候,都会做好笔记,并且插入新的书签。答案中对我最有启发的部分是机器学习课程列表,以及相应的课程笔记和问答网站。
Overwhelmed by Machine Learning: is there an ML101 book:这是StackOverflow上的问题。并且提供了一系列机器学习推荐书籍。Jeff Moser提供的第一个答案是很有用的,其中有课程视频和讲座的链接。
⑸ 机器学习怎么入门
需要掌握的知识比较多,需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
如果你有这方面的天赋,可以去尝试。网站域名用top。
⑹ 有哪些可以自学机器学习、深度学习、人工智能的网站
(1)Andrew Ng的机器学习教程(强烈推荐):
吴恩达斯坦福Andrew NG机器学习大佬公开课(课件和笔记私信up主)
网页链接
在学习其他课程前,建议首先学习Andrew Ng的机器学习课程,该课程可以说是零基础入门课程,通俗易懂,更多的从直觉的角度让你理解机器学习是什么,在做什么,其算法的核心思想和直观理解是什么,学习时Andrew Ng会对复杂的数学公式进行分解,告诉你每一部分的直观意义和目的是什么,学习时不必对公式进行死记硬背,只需要了解公式背后的数学逻辑和目的即可。
(2)中国大学慕课-北京理工大学Python机器学习应用
Python机器学习应用_北京理工大学_中国大学MOOC(慕课)
网页链接
在有了Andrew Ng课程学习的理论基础后,就可以动手实践啦!Python的sklearn库是我用过的最好用的机器学习第三方库,Python语言具有上手简单、容易理解的特点,sklearn库机器学习算法也特别的丰富,在sklearn库的帮助下,你可以轻松设定各种超参数,完成各种算法的实际应用,具体问题时你只需要给算法输入和输出进行训练,sklearn就可以自动帮你训练啦。
(3)莫凡Python
网页链接
如果你不想学习那些枯燥而又深奥的理论,只想对人工智能快速上手,那么莫凡python是强烈推荐的一个网站,非常感谢莫凡,能够在学习之余抽出时间录制视频,把深奥的理论通过图像化的形式表现出来,非常适合小白入门。
(4)强化学习之Divid Silver(强烈推荐)
网页链接
大佬在B站为你讲解强化学习!!如果自己看强化学习内容的话,十有八九是看不下去的,但是如果你跟着AlphaGo的大佬学习强化学习,那真的是分分钟学会,学完这16个小时的视频,再也不用担心看不懂论文上那些浮夸的公式了,该课程在David Silver的个人主页上还有配套的PPT和试卷,可以检验自己强化学习的自学效果。
(5)概率图模型
网页链接
概率图模型作为现代人工智能方法的一种,似乎在现在的论文中很少看到,但概率图模型还是很有意思的一门课。说实话,这门课是真的难,但是学完后,可以结合Matlab支持的第三方库(贝叶斯网络库)做一些很有意思的研究。
网页链接
希望以上能够帮助到你~
⑺ 机器学习能在互联网搜索的哪些环节起什么作用
现在的互联网搜索在一定程度上能够满足用户信息访问的一些基本需求,也是因为机器学习在一定程度上能够利用规模优势去应对人工智能挑战。但距离 “有问必答,准、快、全、好”这一理想还是有一定距离的,这就需要开发出更多更好的机器学习技术解决人工智能的挑战。