Ⅰ 电子商务网站中高负载,高并发指的到底是什么解决思路有哪些
电子商务网站高负载,简单可以分为前端和后台:
前端主要是图片(应该没有文件下载吧),因为是电子商务网站,少不了大量的图片,用户集中的情况下,网页加载就会变的极其缓慢。
解决思路:1、压缩图片,使产品图不失真的情况下尽可能的减少体积,节省宽带。2、增大服务器带宽。3、优化网页代码,尽量采用异步加载方式。4、CDN
后台则是数据处理和数据库负载,电子商务网站后台除了庞大的用户数据要处理意外,还有大量订单,和结算数据。
解决思路:增大数据库服务器配置。
高并发,是所有访问量大的网站都会遇到的问题,并发数是指同一时刻,服务器能接受多少次同时访问,比如服务器配置并发数为200,则这一刻只能允许200个用户同时访问,超过并发数,轻则用户打不开网站,严重的则是服务器宕机。
解决思路:1、CDN。2、增加服务器配置
注:CDN是现在网站普遍使用的加速方案,对减轻服务器负载,避免高并发,缓解恶意攻击都有很好的效果,其主要原理就是将服务器上的数据分发给多个服务器,用户访问的是CDN服务器,从而减轻和保护了网站服务器,也就是常说的云服务器。
Ⅱ 大规模,高并发网站开发经验都有哪些
高并发量网站解决方案
一个小型的网站,可以使用最简单的html静态页面就实现了,配合一些图片达到美化效果,所有的页面均存放在一个目录下,这样的网站对系统架构、性能的要求都很简单。随着互联网业务的不断丰富,网站相关的技术经过这些年的发展,已经细分到很细的方方面面,尤其对于大型网站来说,所采用的技术更是涉及面非常广,从硬件到软件、编程语言、数据库、WebServer、防火墙等各个领域都有了很高的要求,已经不是原来简单的html静态网站所能比拟的。
大型网站,比如门户网站,在面对大量用户访问、高并发请求方面,基本的解决方案集中在这样几个环节:使用高性能的服务器、高性能的数据库、高效率的编程语言、还有高性能的Web容器。这几个解决思路在一定程度上意味着更大的投入。
1、HTML静态化
其实大家都知道,效率最高、消耗最小的就是纯静态化的html页面,所以我们尽可能使我们的网站上的页面采用静态页面来实现,这个最简单的方法其实也是最有效的方法。但是对于大量内容并且频繁更新的网站,我们无法全部手动去挨个实现,于是出现了我们常见的信息发布系统CMS,像我们常访问的各个门户站点的新闻频道,甚至他们的其他频道,都是通过信息发布系统来管理和实现的,信息发布系统可以实现最简单的信息录入自动生成静态页面,还能具备频道管理、权限管理、自动抓取等功能,对于一个大型网站来说,拥有一套高效、可管理的CMS是必不可少的。
除了门户和信息发布类型的网站,对于交互性要求很高的社区类型网站来说,尽可能的静态化也是提高性能的必要手段,将社区内的帖子、文章进行实时的静态化、有更新的时候再重新静态化也是大量使用的策略,像Mop的大杂烩就是使用了这样的策略,网易社区等也是如此。
同时,html静态化也是某些缓存策略使用的手段,对于系统中频繁使用数据库查询但是内容更新很小的应用,可以考虑使用html静态化来实现。比如论坛中论坛的公用设置信息,这些信息目前的主流论坛都可以进行后台管理并且存储在数据库中,这些信息其实大量被前台程序调用,但是更新频率很小,可以考虑将这部分内容进行后台更新的时候进行静态化,这样避免了大量的数据库访问请求。
2、图片服务器分离
大家知道,对于Web服务器来说,不管是Apache、IIS还是其他容器,图片是最消耗资源的,于是我们有必要将图片与页面进行分离,这是基本上大型网站都会采用的策略,他们都有独立的、甚至很多台的图片服务器。这样的架构可以降低提供页面访问请求的服务器系统压力,并且可以保证系统不会因为图片问题而崩溃。
在应用服务器和图片服务器上,可以进行不同的配置优化,比如apache在配置ContentType的时候可以尽量少支持、尽可能少的LoadMole,保证更高的系统消耗和执行效率。
3、数据库集群、库表散列
大型网站都有复杂的应用,这些应用必须使用数据库,那么在面对大量访问的时候,数据库的瓶颈很快就能显现出来,这时一台数据库将很快无法满足应用,于是我们需要使用数据库集群或者库表散列。
在数据库集群方面,很多数据库都有自己的解决方案,Oracle、Sybase等都有很好的方案,常用的MySQL提供的Master/Slave也是类似的方案,您使用了什么样的DB,就参考相应的解决方案来实施即可。
上面提到的数据库集群由于在架构、成本、扩张性方面都会受到所采用DB类型的限制,于是我们需要从应用程序的角度来考虑改善系统架构,库表散列是常用并且最有效的解决方案。
我们在应用程序中安装业务和应用或者功能模块将数据库进行分离,不同的模块对应不同的数据库或者表,再按照一定的策略对某个页面或者功能进行更小的数据库散列,比如用户表,按照用户ID进行表散列,这样就能够低成本的提升系统的性能并且有很好的扩展性。
sohu的论坛就是采用了这样的架构,将论坛的用户、设置、帖子等信息进行数据库分离,然后对帖子、用户按照板块和ID进行散列数据库和表,最终可以在配置文件中进行简单的配置便能让系统随时增加一台低成本的数据库进来补充系统性能。
4、缓存
缓存一词搞技术的都接触过,很多地方用到缓存。网站架构和网站开发中的缓存也是非常重要。这里先讲述最基本的两种缓存。高级和分布式的缓存在后面讲述。
架构方面的缓存,对Apache比较熟悉的人都能知道Apache提供了自己的缓存模块,也可以使用外加的Squid模块进行缓存,这两种方式均可以有效的提高Apache的访问响应能力。
网站程序开发方面的缓存,Linux上提供的Memory Cache是常用的缓存接口,可以在web开发中使用,比如用Java开发的时候就可以调用MemoryCache对一些数据进行缓存和通讯共享,一些大型社区使用了这样的架构。另外,在使用web语言开发的时候,各种语言基本都有自己的缓存模块和方法,PHP有Pear的Cache模块,Java就更多了,.net不是很熟悉,相信也肯定有。
5、镜像
镜像是大型网站常采用的提高性能和数据安全性的方式,镜像的技术可以解决不同网络接入商和地域带来的用户访问速度差异,比如ChinaNet和ENet之间的差异就促使了很多网站在教育网内搭建镜像站点,数据进行定时更新或者实时更新。在镜像的细节技术方面,这里不阐述太深,有很多专业的现成的解决架构和产品可选。也有廉价的通过软件实现的思路,比如Linux上的rsync等工具。
6、负载均衡
负载均衡将是大型网站解决高负荷访问和大量并发请求采用的高端解决办法。
负载均衡技术发展了多年,有很多专业的服务提供商和产品可以选择,我个人接触过一些解决方法,其中有两个架构可以给大家做参考。
(1)、硬件四层交换
第四层交换使用第三层和第四层信息包的报头信息,根据应用区间识别业务流,将整个区间段的业务流分配到合适的应用服务器进行处理。
第四层交换功能就像是虚IP,指向物理服务器。它传输的业务服从的协议多种多样,有HTTP、FTP、NFS、Telnet或其他协议。这些业务在物理服务器基础上,需要复杂的载量平衡算法。在IP世界,业务类型由终端TCP或UDP端口地址来决定,在第四层交换中的应用区间则由源端和终端IP地址、TCP和UDP端口共同决定。
在硬件四层交换产品领域,有一些知名的产品可以选择,比如Alteon、F5等,这些产品很昂贵,但是物有所值,能够提供非常优秀的性能和很灵活的管理能力。“Yahoo中国”当初接近2000台服务器,只使用了三、四台Alteon就搞定了。
(2)、软件四层交换
大家知道了硬件四层交换机的原理后,基于OSI模型来实现的软件四层交换也就应运而生,这样的解决方案实现的原理一致,不过性能稍差。但是满足一定量的压力还是游刃有余的,有人说软件实现方式其实更灵活,处理能力完全看你配置的熟悉能力。
软件四层交换我们可以使用Linux上常用的LVS来解决,LVS就是Linux Virtual Server,他提供了基于心跳线heartbeat的实时灾难应对解决方案,提高系统的强壮性,同时可供了灵活的虚拟VIP配置和管理功能,可以同时满足多种应用需求,这对于分布式的系统来说必不可少。
一个典型的使用负载均衡的策略就是,在软件或者硬件四层交换的基础上搭建squid集群,这种思路在很多大型网站包括搜索引擎上被采用,这样的架构低成本、高性能还有很强的扩张性,随时往架构里面增减节点都非常容易。
对于大型网站来说,前面提到的每个方法可能都会被同时使用到,这里介绍得比较浅显,具体实现过程中很多细节还需要大家慢慢熟悉和体会。有时一个很小的squid参数或者apache参数设置,对于系统性能的影响就会很大。
最新:CDN加速技术
CDN的全称是内容分发网络。其目的是通过在现有的Internet中增加一层新的网络架构,将网站的内容发布到最接近用户的网络“边缘”,使用户可以就近取得所需的内容,提高用户访问网站的响应速度。
CDN有别于镜像,因为它比镜像更智能,或者可以做这样一个比喻:CDN=更智能的镜像+缓存+流量导流。因而,CDN可以明显提高Internet网络中信息流动的效率。从技术上全面解决由于网络带宽小、用户访问量大、网点分布不均等问题,提高用户访问网站的响应速度。
CDN的类型特点
CDN的实现分为三类:镜像、高速缓存、专线。
镜像站点(Mirror Site),是最常见的,它让内容直接发布,适用于静态和准动态的数据同步。但是购买和维护新服务器的费用较高,还必须在各个地区设置镜像服务器,配备专业技术人员进行管理与维护。对于大型网站来说,更新所用的带宽成本也大大提高了。
高速缓存,成本较低,适用于静态内容。Internet的统计表明,超过80%的用户经常访问的是20%的网站的内容,在这个规律下,缓存服务器可以处理大部分客户的静态请求,而原始的服务器只需处理约20%左右的非缓存请求和动态请求,于是大大加快了客户请求的响应时间,并降低了原始服务器的负载。
CDN服务一般会在全国范围内的关键节点上放置缓存服务器。
专线,让用户直接访问数据源,可以实现数据的动态同步。
CDN的实例
举个例子来说,当某用户访问网站时,网站会利用全球负载均衡技术,将用户的访问指向到距离用户最近的正常工作的缓存服务器上,直接响应用户的请求。
当用户访问已经使用了CDN服务的网站时,其解析过程与传统解析方式的最大区别就在于网站的授权域名服务器不是以传统的轮询方式来响应本地DNS的解析请求,而是充分考虑用户发起请求的地点和当时网络的情况,来决定把用户的请求定向到离用户最近同时负载相对较轻的节点缓存服务器上。
通过用户定位算法和服务器健康检测算法综合后的数据,可以将用户的请求就近定向到分布在网络“边缘”的缓存服务器上,保证用户的访问能得到更及时可靠的响应。
由于大量的用户访问都由分布在网络边缘的CDN节点缓存服务器直接响应了,这就不仅提高了用户的访问质量,同时有效地降低了源服务器的负载压力。
Ⅲ 什么是高并发,高可用,高性能
高可用:设备可用性强,具有高可替代性,故障发生后,系统能马上恢复。
高性能:设备性能强,系统运算能力强,响应速度快。
高并发:设备并发能力强,具有同时处理多种事务的能力0.0
Ⅳ 什么是 高可用 高并发 高性能
按照国际有关组织的定义,设备在任一随机时刻需要和开始执行任务时,处于可工作或可使用状态的程度。通常用可用度(A0)表示,它把可靠性、维修性、测试性、保障性等等产品的设计特性综合成为用户所关心的使用参数。可用性的概率度量叫“可用度”。 固有可用度AI=TBF/(TBF+MCT)其中:TBF为平均故障间隔时间(小时), MCT为平均修复时间(小时)。使用可用性A0=累计工作时间/(累计工作时间+累计不能工作时间)累计不能工作时间包括累计直接维修时间和累计维修保障延误时间MLDT。故: A0=MTBF/(MTBF+MTTR+MLDT)可靠性的定义:产品在规定的条件下和规定的时间内,完成规定功能的能力。可靠性的概率度量叫可靠度。高可靠性是指该设备的可靠性水平高,例如平均无故障工作时间超过10000小时就比1000小时的高。可扩展性是指设备设计成为模块结构,并且具有高可靠性水平,可以与新设计的功能模块组合成新型装备,具有良好的系统功能和高的可靠性、可用性水平。
Ⅳ 科普一下,什么是网站系统的性能,可用性,可伸缩性
性能(Performance)
性能是一个网站能够同时处理用户请求的表现能力。 不同的视觉,有不同的表现形式,性能的指标通常包括,响应时间,并发数,吞吐量,以及性能计数器等。
其中吞吐量和性能计数器比较难理解一些,
吞吐量其实指的就是单位时间内,系统处理的请求数量。 TPS(每秒的事务数),HPS(每秒的HTTP请求数),QPS(每秒的查询数)等等。性能一般通过缓存来解决。
性能计数器,它描述的是服务器或者操作系统的一组指标,包括,对象与线程数,内存使用,CPU使用,磁盘和网络的I/O等等。
可用性(Availability)
可用性是在某个考察时间,系统能够正常运行的概率或时间占有率期望值。考察时间为指定瞬间,则称瞬时可用性;考察时间为指定时段,则称时段可用性;考察时间为连续使用期间的任一时刻,则称固有可用性。它是衡量设备在投入使用后实际使用的效能,是设备或系统的可靠性、可维护性和维护支持性的综合特性。在大型网站应用系统中,衡量的指标一般是服务的可用性用几个9来表示。
高可用性一般通过负载均衡,数据备份,失效转移,提高软件质量,特别是发布时的质量来实现和保证的。
可伸缩性(Scalability)
可伸缩性,是一种对软件系统计算处理能力的设计指标,高可伸缩性代表一种弹性,在系统扩展成长过程中,软件能够保证旺盛的生命力,通过很少的改动甚至只是硬件设备的添置,就能实现整个系统处理能力的线性增长,实现高吞吐量和低延迟高性能。
纵向的可伸缩性——在同一个逻辑单元内增加资源来提高处理能力。这样的例子包括在现有服务器上增加CPU,或者在现有的RAID/SAN存储中增加硬盘来提高存储量。
横向的可伸缩性——增加更多逻辑单元的资源,并令它们像是一个单元一样工作。大多数集群方案、分布式文件系统、负载平衡都是在帮助你提高横向的可伸缩性
可伸缩性,一般通过DNS域名解析负载均衡,反向代理负载均衡,IP负载均衡,数据链路层负载均衡,改进和提高分布式缓存的算法,利用NOSQL数据库的可伸缩性等等。
可扩展性(Extensibility)
可扩展性,通常和可伸缩性混为一谈.在软件范畴上,是软件系统本身的属性,或者进一步说是设计的属性,代码的属性。因为我们经常说设计的可扩展性,代码的可扩展性.也可以说是系统设计的松耦合性。
实现方式:一般通过事件驱动架构和分布式架构来实现一个网站系统的可扩展性。
Ⅵ 常用的web服务器软件有哪些
1.IIS
IIS是英文Internet Information Server的缩写,译成中文就是"Internet信息服务"的意思。它是微软公司主推的服务器,最新的版本是Windows2008里面包含的IIS 7,IIS与Window Server完全集成在一起,因而用户能够利用Windows Server和NTFS(NT File System,NT的文件系统)内置的安全特性,建立强大,灵活而安全的Internet和Intranet站点。
2.ApacheApache
ApacheApache在世界上的排名是第一的,它可以运行在几乎所有广泛使用的计算机平台上。Apache源于NCSAhttpd服务器,经过多次修改,不仅简单、速度快、而且性能稳定,还可以用来做代理服务器。
3.Nginx
Nginx不仅是一个小巧且高效的HTTP服务器,也可以做一个高效的负载均衡反向代理,通过它接受用户的请求并分发到多个Mongrel进程可以极大提高Rails应用的并发能力。
4.Zeus
Zeus是一个运行于Unix下的非常优秀的Web Server,据说性能超过Apache,是效率最高的Web Server之一。
5.Sun
Sun的Java系统Web服务器也就是以前的Sun ONE Web Server。主要出现在那些运行Sun的Solaris操作系统的关键任务级Web服务器上。它最新的版本号是6.1,可以支持x86版本Solaris,Red Hat Linux,HP-UX 11i, IBM AIX,甚至可以支持Windows,但它的大多数用户都选择了SPARC版本的Solaris操作系统。
Ⅶ 阿里云服务对象有哪些
1.云服务器ECS
云服务器ECS:云计算产品的基本款,几乎每个客户都必买的,云服务器从1核1G到32核64G(随着时间推移,配置会越来越高),各种优惠都有,不同时段有不同的优惠活动,可以参考阿里云惠网;关于服务器配置还可以随意升降配置,可以包年包月,也可以按量随用随买。对于很多小公司及个人,只购买一台云服务器ECS就够用了。对于稍微大一点的企业从性能、安全、加载速度等方面诸多考虑,可能需要购买其他的阿里云产品。
阿里云从云服务器ECS衍生出来很多云服务器系列,例如适用于初级用户的轻量应用服务器,还有为了迎合各种高性能场景的云服务器,诸如GPU云服务器、FPGA云服务器、神龙云服务器等,总之都是云服务器,是企业上云的基本款。
2.云数据库RDS
云数据库:目前主流是MySQL,阿里云提供MySQL、PostgreSQL,SQL Server,MongoDB,Memcache(Redis)等不同的数据库产品。相对于云服务器,云数据库属于非必需品,因为用户完全可以在云服务器上搭建数据库。由于自身业务发展需要,将数据库独立出来,这时候就需要阿里云的RDS云数据库了。
3.负载均衡SLB
负载均衡SLB:对多台云服务器进行流量分发服务。为了应对业务需求,企业往往会有多台云服务器提供服务器,负载均衡就是将用户的请求按照企业自定义的策略转发到最优的服务器。
4.对象存储OSS
如果企业静态文件较多(图片、视频等大文件),可以将大量的存储内容转移独立出来,放到对象存储OSS里面。
5.CDN
内容分发网络,假设企业的云服务器在杭州,那么位于东北地区的用户访问速度就会比较慢,CDN可以解决这个问题,CDN将源站内容分发至最接近用户的节点,使用户可就近取得所需内容,提高用户访问的响应速度和成功率。
6.专有网络 VPC
大家普遍会给阿里云打上公有云的标签,实际上阿里云可以提供的不仅仅是公有云,还有私有云、混合云等。专有网络VPC可以帮助企业在阿里云构建出一个隔离的网络环境,用户可以自定义IP 地址范围、网段、路由表和网关等,VPC可以提供更安全和灵活的网络环境,为我们构建混合云提供服务。
7.弹性伸缩
传统的企业自建的私有机房是不具有弹性伸缩功能的,假设企业遇到业务波峰,只能通过人为的升级硬件来应对,业务回落时就会造成硬件资源的浪费,而弹性伸缩很好的解决了这个痛点。阿里云弹性伸缩可以管理您的集群,在高峰期自动增加ECS实例,在业务回落时自动减少ECS实例,节省基础设施成本。另外,这个弹性伸缩是免费的。
8.DDoS高防IP
DDoS是目前比较常见的攻击方式,为了抵御DDoS攻击,用户可以通过配置高防IP,将攻击流量引流到高防IP,确保源站的稳定可靠。讲真,阿里云的DDoS高防IP还挺贵的。
9.安骑士
当用户购买了云服务器ECS后,可能会受到阿里云发送的安骑士漏洞风险短信,安骑士一款主机安全软件,为您提供主机漏洞检测、基线检查、病毒查杀、资产统一管理等功能,为您建立安全运维管理平台。安骑士企业版可以免费试用7天,之后想再使用,是需要付费的。
10.证书服务
我们在访问网站时,会在浏览器的地址栏中看到绿色的锁,意思是该网站是基于HTTPS协议的。前几年网站基本上都是基于http协议,阿里云网络网目前还是基于http协议,相对于http协议,https提供了一层加密服务,会更加安全一些。网站想要实现HTTPS,可以向阿里云申请签发证书服务器,即我们常说的SSL证书。阿里云目前可以申请到免费的SSL证书(Symantec赛门铁克品牌)。
11.态势感知
态势感知说起来还比较高端,有点类似于先知的意思。态势感知会收集企业20种原始日志和网络空间威胁情报,利用机器学习还原已发生的攻击,并预测未发生的攻击,帮客户扩大安全可见性,并集中管理云上资产安全事件。
12.堡垒机
日防夜防家贼难防,开个玩笑哈。企业往往更加关注外部的安全威胁而忽略了企业内部,实际上运维人员误操作或者仿冒运维人员将对企业造成很严重的损失,更有甚至是致命的。例如:携程的宕机12小时事件,由于员工错误操作,删除了服务器代码,据不完全统计,携程宕机带来的直接损失就是每小时160万美金。堡垒机基于协议正向代理实现,对SSH、Windows远程桌面、SFTP等常见运维协议的 数据流进行全程记录,再通过协议数据流重组的方式进行录像回放,达到运维审计的目的。
13.消息队列MQ
说起消息队列,最典型的应用场景就是一年一度的双十一购物节,消息队列是一个真正具备低延迟、高并发、高可用、高可靠,可支撑万亿级数据洪峰的分布式消息中间件。当小仙女们开启大规模的剁手模式时,用户大量并发访问商品数据库,消息队列可以缓解瓶颈,减少页面响应时间,当然还有其他方面的功能优势,咱这里阿里云网络网就不过多赘述,双十一就是MQ的典型应用场景,大概就是这么个意思。
14.域名
域名与主机ip绑定,通过域名解析访问到主机上的服务,主要是简单易记,相当于别名。
15.虚拟主机
新手建站一般都是从虚拟主机开始的,无需自己配置web环境,简单易管理,价格也便宜。
16.企业邮箱
企业邮箱就是以公司域名为后缀的邮箱,企业自建的邮件系统。目前各大互联网大佬,例如:阿里云、腾讯云、网易等都有提供免费版的企业邮箱,如果想解除诸多限制,可以选购阿里云的企业邮箱付费版。
17.云解析DNS
DNS就是将你的域名解析到服务器的IP上,一般来讲域名解析是免费的,免费版就够用了。
Ⅷ 大数据核心技术有哪些
大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。首先给出一个通用化的大数据处理框架,主要分为下面几个方面:数据采集与预处理、数据存储、数据清洗、数据查询分析和数据可视化。
一、数据采集与预处理
对于各种来源的数据,包括移动互联网数据、社交网络的数据等,这些结构化和非结构化的海量数据是零散的,也就是所谓的数据孤岛,此时的这些数据并没有什么意义,数据采集就是将这些数据写入数据仓库中,把零散的数据整合在一起,对这些数据综合起来进行分析。数据采集包括文件日志的采集、数据库日志的采集、关系型数据库的接入和应用程序的接入等。在数据量比较小的时候,可以写个定时的脚本将日志写入存储系统,但随着数据量的增长,这些方法无法提供数据安全保障,并且运维困难,需要更强壮的解决方案。
Flume NG作为实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据,同时,对数据进行简单处理,并写到各种数据接收方(比如文本,HDFS,Hbase等)。Flume NG采用的是三层架构:Agent层,Collector层和Store层,每一层均可水平拓展。其中Agent包含Source,Channel和 Sink,source用来消费(收集)数据源到channel组件中,channel作为中间临时存储,保存所有source的组件信息,sink从channel中读取数据,读取成功之后会删除channel中的信息。
NDC,Netease Data Canal,直译为网易数据运河系统,是网易针对结构化数据库的数据实时迁移、同步和订阅的平台化解决方案。它整合了网易过去在数据传输领域的各种工具和经验,将单机数据库、分布式数据库、OLAP系统以及下游应用通过数据链路串在一起。除了保障高效的数据传输外,NDC的设计遵循了单元化和平台化的设计哲学。
Logstash是开源的服务器端数据处理管道,能够同时从多个来源采集数据、转换数据,然后将数据发送到您最喜欢的 “存储库” 中。一般常用的存储库是Elasticsearch。Logstash 支持各种输入选择,可以在同一时间从众多常用的数据来源捕捉事件,能够以连续的流式传输方式,轻松地从您的日志、指标、Web 应用、数据存储以及各种 AWS 服务采集数据。
Sqoop,用来将关系型数据库和Hadoop中的数据进行相互转移的工具,可以将一个关系型数据库(例如Mysql、Oracle)中的数据导入到Hadoop(例如HDFS、Hive、Hbase)中,也可以将Hadoop(例如HDFS、Hive、Hbase)中的数据导入到关系型数据库(例如Mysql、Oracle)中。Sqoop 启用了一个 MapRece 作业(极其容错的分布式并行计算)来执行任务。Sqoop 的另一大优势是其传输大量结构化或半结构化数据的过程是完全自动化的。
流式计算是行业研究的一个热点,流式计算对多个高吞吐量的数据源进行实时的清洗、聚合和分析,可以对存在于社交网站、新闻等的数据信息流进行快速的处理并反馈,目前大数据流分析工具有很多,比如开源的strom,spark streaming等。
Strom集群结构是有一个主节点(nimbus)和多个工作节点(supervisor)组成的主从结构,主节点通过配置静态指定或者在运行时动态选举,nimbus与supervisor都是Storm提供的后台守护进程,之间的通信是结合Zookeeper的状态变更通知和监控通知来处理。nimbus进程的主要职责是管理、协调和监控集群上运行的topology(包括topology的发布、任务指派、事件处理时重新指派任务等)。supervisor进程等待nimbus分配任务后生成并监控worker(jvm进程)执行任务。supervisor与worker运行在不同的jvm上,如果由supervisor启动的某个worker因为错误异常退出(或被kill掉),supervisor会尝试重新生成新的worker进程。
当使用上游模块的数据进行计算、统计、分析时,就可以使用消息系统,尤其是分布式消息系统。Kafka使用Scala进行编写,是一种分布式的、基于发布/订阅的消息系统。Kafka的设计理念之一就是同时提供离线处理和实时处理,以及将数据实时备份到另一个数据中心,Kafka可以有许多的生产者和消费者分享多个主题,将消息以topic为单位进行归纳;Kafka发布消息的程序称为procer,也叫生产者,预订topics并消费消息的程序称为consumer,也叫消费者;当Kafka以集群的方式运行时,可以由一个服务或者多个服务组成,每个服务叫做一个broker,运行过程中procer通过网络将消息发送到Kafka集群,集群向消费者提供消息。Kafka通过Zookeeper管理集群配置,选举leader,以及在Consumer Group发生变化时进行rebalance。Procer使用push模式将消息发布到broker,Consumer使用pull模式从broker订阅并消费消息。Kafka可以和Flume一起工作,如果需要将流式数据从Kafka转移到hadoop,可以使用Flume代理agent,将Kafka当做一个来源source,这样可以从Kafka读取数据到Hadoop。
Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。它的作用主要有配置管理、名字服务、分布式锁和集群管理。配置管理指的是在一个地方修改了配置,那么对这个地方的配置感兴趣的所有的都可以获得变更,省去了手动拷贝配置的繁琐,还很好的保证了数据的可靠和一致性,同时它可以通过名字来获取资源或者服务的地址等信息,可以监控集群中机器的变化,实现了类似于心跳机制的功能。
二、数据存储
Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。
HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。HBase是一种Key/Value系统,部署在hdfs上,克服了hdfs在随机读写这个方面的缺点,与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。
Phoenix,相当于一个Java中间件,帮助开发工程师能够像使用JDBC访问关系型数据库一样访问NoSQL数据库HBase。
Yarn是一种Hadoop资源管理器,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。Yarn由下面的几大组件构成:一个全局的资源管理器ResourceManager、ResourceManager的每个节点代理NodeManager、表示每个应用的Application以及每一个ApplicationMaster拥有多个Container在NodeManager上运行。
Mesos是一款开源的集群管理软件,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等应用架构。
Redis是一种速度非常快的非关系数据库,可以存储键与5种不同类型的值之间的映射,可以将存储在内存的键值对数据持久化到硬盘中,使用复制特性来扩展性能,还可以使用客户端分片来扩展写性能。
Atlas是一个位于应用程序与MySQL之间的中间件。在后端DB看来,Atlas相当于连接它的客户端,在前端应用看来,Atlas相当于一个DB。Atlas作为服务端与应用程序通讯,它实现了MySQL的客户端和服务端协议,同时作为客户端与MySQL通讯。它对应用程序屏蔽了DB的细节,同时为了降低MySQL负担,它还维护了连接池。Atlas启动后会创建多个线程,其中一个为主线程,其余为工作线程。主线程负责监听所有的客户端连接请求,工作线程只监听主线程的命令请求。
Ku是围绕Hadoop生态圈建立的存储引擎,Ku拥有和Hadoop生态圈共同的设计理念,它运行在普通的服务器上、可分布式规模化部署、并且满足工业界的高可用要求。其设计理念为fast analytics on fast data。作为一个开源的存储引擎,可以同时提供低延迟的随机读写和高效的数据分析能力。Ku不但提供了行级的插入、更新、删除API,同时也提供了接近Parquet性能的批量扫描操作。使用同一份存储,既可以进行随机读写,也可以满足数据分析的要求。Ku的应用场景很广泛,比如可以进行实时的数据分析,用于数据可能会存在变化的时序数据应用等。
在数据存储过程中,涉及到的数据表都是成千上百列,包含各种复杂的Query,推荐使用列式存储方法,比如parquent,ORC等对数据进行压缩。Parquet 可以支持灵活的压缩选项,显着减少磁盘上的存储。
三、数据清洗
MapRece作为Hadoop的查询引擎,用于大规模数据集的并行计算,”Map(映射)”和”Rece(归约)”,是它的主要思想。它极大的方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统中。
随着业务数据量的增多,需要进行训练和清洗的数据会变得越来越复杂,这个时候就需要任务调度系统,比如oozie或者azkaban,对关键任务进行调度和监控。
Oozie是用于Hadoop平台的一种工作流调度引擎,提供了RESTful API接口来接受用户的提交请求(提交工作流作业),当提交了workflow后,由工作流引擎负责workflow的执行以及状态的转换。用户在HDFS上部署好作业(MR作业),然后向Oozie提交Workflow,Oozie以异步方式将作业(MR作业)提交给Hadoop。这也是为什么当调用Oozie 的RESTful接口提交作业之后能立即返回一个JobId的原因,用户程序不必等待作业执行完成(因为有些大作业可能会执行很久(几个小时甚至几天))。Oozie在后台以异步方式,再将workflow对应的Action提交给hadoop执行。
Azkaban也是一种工作流的控制引擎,可以用来解决有多个hadoop或者spark等离线计算任务之间的依赖关系问题。azkaban主要是由三部分构成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban将大多数的状态信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、认证、调度以及对工作流执行过程中的监控等;Azkaban Executor Server用来调度工作流和任务,记录工作流或者任务的日志。
流计算任务的处理平台Sloth,是网易首个自研流计算平台,旨在解决公司内各产品日益增长的流计算需求。作为一个计算服务平台,其特点是易用、实时、可靠,为用户节省技术方面(开发、运维)的投入,帮助用户专注于解决产品本身的流计算需求。
四、数据查询分析
Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。Hive本身不存储和计算数据,它完全依赖于HDFS和MapRece。可以将Hive理解为一个客户端工具,将SQL操作转换为相应的MapRece jobs,然后在hadoop上面运行。Hive支持标准的SQL语法,免去了用户编写MapRece程序的过程,它的出现可以让那些精通SQL技能、但是不熟悉MapRece 、编程能力较弱与不擅长Java语言的用户能够在HDFS大规模数据集上很方便地利用SQL 语言查询、汇总、分析数据。
Hive是为大数据批量处理而生的,Hive的出现解决了传统的关系型数据库(MySql、Oracle)在大数据处理上的瓶颈 。Hive 将执行计划分成map->shuffle->rece->map->shuffle->rece…的模型。如果一个Query会被编译成多轮MapRece,则会有更多的写中间结果。由于MapRece执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。在Hive的运行过程中,用户只需要创建表,导入数据,编写SQL分析语句即可。剩下的过程由Hive框架自动的完成。
Impala是对Hive的一个补充,可以实现高效的SQL查询。使用Impala来实现SQL on Hadoop,用来进行大数据实时查询分析。通过熟悉的传统关系型数据库的SQL风格来操作大数据,同时数据也是可以存储到HDFS和HBase中的。Impala没有再使用缓慢的Hive+MapRece批处理,而是通过使用与商用并行关系数据库中类似的分布式查询引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分组成),可以直接从HDFS或HBase中用SELECT、JOIN和统计函数查询数据,从而大大降低了延迟。Impala将整个查询分成一执行计划树,而不是一连串的MapRece任务,相比Hive没了MapRece启动时间。
Hive 适合于长时间的批处理查询分析,而Impala适合于实时交互式SQL查询,Impala给数据人员提供了快速实验,验证想法的大数据分析工具,可以先使用Hive进行数据转换处理,之后使用Impala在Hive处理好后的数据集上进行快速的数据分析。总的来说:Impala把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的map->rece模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。但是Impala不支持UDF,能处理的问题有一定的限制。
Spark拥有Hadoop MapRece所具有的特点,它将Job中间输出结果保存在内存中,从而不需要读取HDFS。Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。
Nutch 是一个开源Java 实现的搜索引擎。它提供了我们运行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬虫。
Solr用Java编写、运行在Servlet容器(如Apache Tomcat或Jetty)的一个独立的企业级搜索应用的全文搜索服务器。它对外提供类似于Web-service的API接口,用户可以通过http请求,向搜索引擎服务器提交一定格式的XML文件,生成索引;也可以通过Http Get操作提出查找请求,并得到XML格式的返回结果。
Elasticsearch是一个开源的全文搜索引擎,基于Lucene的搜索服务器,可以快速的储存、搜索和分析海量的数据。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。
还涉及到一些机器学习语言,比如,Mahout主要目标是创建一些可伸缩的机器学习算法,供开发人员在Apache的许可下免费使用;深度学习框架Caffe以及使用数据流图进行数值计算的开源软件库TensorFlow等,常用的机器学习算法比如,贝叶斯、逻辑回归、决策树、神经网络、协同过滤等。
五、数据可视化
对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。主流的BI平台比如,国外的敏捷BI Tableau、Qlikview、PowrerBI等,国内的SmallBI和新兴的网易有数(可点击这里免费试用)等。
在上面的每一个阶段,保障数据的安全是不可忽视的问题。
基于网络身份认证的协议Kerberos,用来在非安全网络中,对个人通信以安全的手段进行身份认证,它允许某实体在非安全网络环境下通信,向另一个实体以一种安全的方式证明自己的身份。
控制权限的ranger是一个Hadoop集群权限框架,提供操作、监控、管理复杂的数据权限,它提供一个集中的管理机制,管理基于yarn的Hadoop生态圈的所有数据权限。可以对Hadoop生态的组件如Hive,Hbase进行细粒度的数据访问控制。通过操作Ranger控制台,管理员可以轻松的通过配置策略来控制用户访问HDFS文件夹、HDFS文件、数据库、表、字段权限。这些策略可以为不同的用户和组来设置,同时权限可与hadoop无缝对接。