1. python爬虫中怎么写反爬虫
1、通过UA判断:UA是UserAgent,是要求浏览器的身份标志。
UA是UserAgent,是要求浏览器的身份标志。反爬虫机制通过判断访问要求的头部没有UA来识别爬虫,这种判断方法水平很低,通常不作为唯一的判断标准。反爬虫非常简单,可以随机数UA。
2、通过Cookie判定:Cookie是指会员帐户密码登录验证
Cookie是指会员帐户密码登录验证,通过区分该帐户在短时间内爬行的频率来判断。这种方法的反爬虫也很困难,需要多账户爬行。
3、通过访问频率判定
爬虫类经常在短时间内多次访问目标网站,反爬虫类机制可以通过单个IP访问的频率来判断是否是爬虫类。这样的反爬方式难以反制,只能通过更换IP来解决。
4、通过验证码判定
验证码是反爬虫性价比高的实施方案。反爬虫通常需要访问OCR验证码识别平台,或者使用TesseractOCR识别,或者使用神经网络训练识别验证码。
5、动态性页面加载
使用动态加载的网站通常是为了方便用户点击和查看,爬虫无法与页面互动,这大大增加了爬虫的难度。
一般情况下,用户对网站进行信息爬取时,都要受到“爬虫”的约束,使用户在获取信息时受到一定的阻碍
2. shopee网站使用sessionid反爬虫如何破解
shopee网站使用sessionid反爬虫破解如下。
1、基本的http抓取工具。
2、避免重复抓取网页。
3、维护一个所有集群机器能够有效分享的分布式队列。
4、将分布式队列和Scrapy的结合。
5、后续处理,网页析取,存储。
3. 如何使用python解决网站的反爬虫
1、从用户请求的Headers反爬虫是最常见的反爬虫策略。
伪装header。很多网站都会对Headers的User-Agent进行检测,还有一部分网站会对Referer进行检测(一些资源网站的防盗链就是检测Referer)。如果遇到了这类反爬虫机制,可以直接在爬虫中添加Headers,将浏览器的User-Agent复制到爬虫的Headers中;或者将Referer值修改为目标网站域名[评论:往往容易被忽略,通过对请求的抓包分析,确定referer,在程序中模拟访问请求头中添加]。对于检测Headers的反爬虫,在爬虫中修改或者添加Headers就能很好的绕过。
2、基于用户行为反爬虫
还有一部分网站是通过检测用户行为,例如同一IP短时间内多次访问同一页面,或者同一账户短时间内多次进行相同操作。[这种防爬,需要有足够多的ip来应对]
(1)、大多数网站都是前一种情况,对于这种情况,使用IP代理就可以解决。可以专门写一个爬虫,爬取网上公开的代理ip,检测后全部保存起来。有了大量代理ip后可以每请求几次更换一个ip,这在requests或者urllib中很容易做到,这样就能很容易的绕过第一种反爬虫。
编写爬虫代理:
步骤:
1.参数是一个字典{'类型':'代理ip:端口号'}
proxy_support=urllib.request.ProxyHandler({})
2.定制、创建一个opener
opener=urllib.request.build_opener(proxy_support)
3a.安装opener
urllib.request.install_opener(opener)
3b.调用opener
opener.open(url)
用大量代理随机请求目标网站,应对反爬虫
4. 如何正确利用网络爬虫
基本步骤5. Python爬取知乎与我所理解的爬虫与反爬虫
关于知乎验证码登陆的问题,用到了Python上一个重要的图片处理库PIL,如果不行,就把图片存到本地,手动输入。
通过对知乎登陆是的抓包,可以发现登陆知乎,需要post三个参数,一个是账号,一个是密码,一个是xrsf。
这个xrsf隐藏在表单里面,每次登陆的时候,应该是服务器随机产生一个字符串。所有,要模拟登陆的时候,必须要拿到xrsf。
用chrome (或者火狐 httpfox 抓包分析)的结果:
所以,必须要拿到xsrf的数值,注意这是一个动态变化的参数,每次都不一样。
拿到xsrf,下面就可以模拟登陆了。
使用requests库的session对象,建立一个会话的好处是,可以把同一个用户的不同请求联系起来,直到会话结束都会自动处理cookies。
注意:cookies 是当前目录的一个文件,这个文件保存了知乎的cookie,如果是第一个登陆,那么当然是没有这个文件的,不能通过cookie文件来登陆。必须要输入密码。
这是登陆的函数,通过login函数来登陆,post 自己的账号,密码和xrsf 到知乎登陆认证的页面上去,然后得到cookie,将cookie保存到当前目录下的文件里面。下次登陆的时候,直接读取这个cookie文件。
这是cookie文件的内容
以下是源码:
运行结果:
https://github.com/zhaozhengcoder/Spider/tree/master/spider_hu
反爬虫最基本的策略:
爬虫策略:
这两个都是在http协议的报文段的检查,同样爬虫端可以很方便的设置这些字段的值,来欺骗服务器。
反爬虫进阶策略:
1.像知乎一样,在登录的表单里面放入一个隐藏字段,里面会有一个随机数,每次都不一样,这样除非你的爬虫脚本能够解析这个随机数,否则下次爬的时候就不行了。
2.记录访问的ip,统计访问次数,如果次数太高,可以认为这个ip有问题。
爬虫进阶策略:
1.像这篇文章提到的,爬虫也可以先解析一下隐藏字段的值,然后再进行模拟登录。
2.爬虫可以使用ip代理池的方式,来避免被发现。同时,也可以爬一会休息一会的方式来降低频率。另外,服务器根据ip访问次数来进行反爬,再ipv6没有全面普及的时代,这个策略会很容易造成误伤。(这个是我个人的理解)。
通过Cookie限制进行反爬虫:
和Headers校验的反爬虫机制类似,当用户向目标网站发送请求时,会再请求数据中携带Cookie,网站通过校验请求信息是否存在Cookie,以及校验Cookie的值来判定发起访问请求的到底是真实的用户还是爬虫,第一次打开网页会生成一个随机cookie,如果再次打开网页这个Cookie不存在,那么再次设置,第三次打开仍然不存在,这就非常有可能是爬虫在工作了。
反爬虫进进阶策略:
1.数据投毒,服务器在自己的页面上放置很多隐藏的url,这些url存在于html文件文件里面,但是通过css或者js使他们不会被显示在用户看到的页面上面。(确保用户点击不到)。那么,爬虫在爬取网页的时候,很用可能取访问这个url,服务器可以100%的认为这是爬虫干的,然后可以返回给他一些错误的数据,或者是拒绝响应。
爬虫进进阶策略:
1.各个网站虽然需要反爬虫,但是不能够把网络,谷歌这样的搜索引擎的爬虫给干了(干了的话,你的网站在网络都说搜不到!)。这样爬虫应该就可以冒充是网络的爬虫去爬。(但是ip也许可能被识破,因为你的ip并不是网络的ip)
反爬虫进进进阶策略:
给个验证码,让你输入以后才能登录,登录之后,才能访问。
爬虫进进进阶策略:
图像识别,机器学习,识别验证码。不过这个应该比较难,或者说成本比较高。
参考资料:
廖雪峰的python教程
静觅的python教程
requests库官方文档
segmentfault上面有一个人的关于知乎爬虫的博客,找不到链接了
6. 如何反爬虫
反爬虫
就是和爬虫抗衡,减少被爬取。
因为搜索引擎的流行,网络爬虫已经成了很普及网络技术,
相当部分国内爬虫不遵守robots协议。
所有有了保护自己内容不让别人抓取的反爬虫需求
1、手工识别和拒绝爬虫的访问
2、通过识别爬虫的User-Agent信息来拒绝爬虫
3、通过网站流量统计系统和日志分析来识别爬虫
4、网站的实时反爬虫防火墙实现
5、通过JS算法,文字经过一定转换后才显示出来,容易被破解。某技术网站采用了这种方法
6、通过CSS隐藏技术,可见的页面样式和HTML里DIV结构不同,增加了爬虫的难度,同时增加自己的维护难度。
技术网站采用了这种方法
7、通过JS不让用户复制,这对非专业人员有效,对技术人员/工程师来说,没有任何效果。不少网站采用。
8、通过flash等插件技术(会被破解,同时对用户不友好,有流失用户的可能性)。早期网站用得多,移动互联网来后,这种方式对用户不友好,少有专业网站采用了。
9、图片化
A:将文字图片化,增加了维护成本,和移动端的可读性
B:将标点符号图片化,再适当增加CSS混淆,这是一种较好的办法,不影响搜索引擎收录,不影响用户使用。但影响爬虫,是一种较好的反爬虫方式,某着名的文学网站采用了这种方法
10、交给专业反爬虫公司来处理
7. 如何应对网站反爬虫策略如何高效地爬大量数据
应对反爬策略的方法:1、模拟正常用户。反爬虫机制还会利用检测用户的行为来判断,例如Cookies来判断是不是有效的用户。
2、动态页面限制。有时候发现抓取的信息内容空白,这是因为这个网站的信息是通过用户的XHR动态返回内容信息。解决这种问题就要爬虫程序对网站进行分析,找到内容信息并抓取,才能获取内容。
3、降低IP访问频率。有时候平台为了阻止频繁访问,会设置IP在规定时间内的访问次数,超过次数就会禁止访问。所以绕过反爬虫机制可以降低爬虫的访问频率,还可以用IPIDEA代理IP换IP解决限制。
8. 15《Python 原生爬虫教程》爬虫和反爬虫
有的时候,当我们的爬虫程序完成了,并且在本地测试也没有问题,爬取了一段时间之后突然就发现报错无法抓取页面内容了。这个时候,我们很有可能是遇到了网站的反爬虫拦截。
我们知道,网站一方面想要爬虫爬取网站,比如让搜索引擎爬虫去爬取网站的内容,来增加网站的搜索排名。另一方面,由于网站的服务器资源有限,过多的非真实的用户对网站的大量访问,会增加运营成本和服务器负担。
这是一种最基本的反爬虫方式,网站运营者通过验证爬虫的请求头的 User-agent,accep-enconding 等信息来验证请求的发出宿主是不是真实的用户常用浏览器或者一些特定的请求头信息。
通过 Ajax,或 者javascript 来动态获取和加载数据,加大爬虫直接获取数据的难度。
这个相信大多数读者非常熟悉了吧,当我们输错多次密码的时候,很多平台都会弹出各种二维码让我们识别,或者抢火车票的时候,会出现各种复杂的验证码,验证码是反爬虫措施中,运用最广,同时也是最有效直接的方式来阻止爬虫的措施之一。
在识别到某些异常的访问的时候,网站运营者会设置一个黑名单,把一些判定为爬虫的IP进行限制或者封杀。
有些网站,没有游客模式,只有通过注册后才可以登录看到内容,这个就是典型的使用账号限制网站,一般可以用在网站用户量不多,数据安全要求严格的网站中。
我们可以在请求头中替换我们的请求媒介,让网站误认为是我们是通过移动端的访问,运行下面的代码后,当我们打开 hupu.html,我们会发现返回的是移动端的虎扑的页面而不是网页端的。
比如,我们可以设置一个随机的间隔时间,来模拟用户的行为,减少访问的次数和频率。 我们可以在我们爬虫的程序中,加入如下的代码,让爬虫休息3秒左右,再进行爬取,可以有效地避开网站的对爬虫的检测和识别。
代理就是通过访问第三方的机器,然后通过第三方机器的 IP 进行访问,来隐藏自己的真实IP地址。
由于第三方代理良莠不齐,而且不稳定,经常出现断线的情况,爬取速度也会慢许多,如果对爬虫质量有严格要求的话,不建议使用此种方法进行爬取。
可以通过动态的 IP 拨号服务器来变换 IP,也可以通过 Tor 代理服务器来变换 IP。
反反爬虫的策略,一直是在变换的,我们应该具体问题具体分析,通过不断的试错来完善我们的爬虫爬取,千万不要以为,爬虫程序在本机调试之后,没有问题,就可以高枕无忧了。线上的问题,总是千变万化,我们需要根据我们的具体反爬措施,来针对的写一些反反爬虫的代码,这样才能保证线上环境的万无一失。
9. 反反爬虫技术的常用方法
通过UA 识别爬虫有些爬虫的UA是特殊的,与正常浏览器的不一样,可通过识别特征UA,直接封掉爬虫请求
设置IP访问频率,如果超过一定频率,弹出验证码如果输入正确的验证码,则放行,如果没有输入,则拉入禁止一段时间,如果超过禁爬时间,再次出发验证码,则拉入黑名单。当然根据具体的业务,为不同场景设置不同阈值,比如登陆用户和非登陆用户,请求是否含有refer。
通过并发识别爬虫有些爬虫的并发是很高的,统计并发最高的IP,加入黑名单(或者直接封掉爬虫IP所在C段)
请求的时间窗口过滤统计爬虫爬取网页的频率都是比较固定的,不像人去访问网页,中间的间隔时间比较无规则,所以我们可以给每个IP地址建立一个时间窗口,记录IP地址最近12次访问时间,每记录一次就滑动一次窗口,比较最近访问时间和当前时间,如果间隔时间很长判断不是爬虫,清除时间窗口,如果间隔不长,就回溯计算指定时间段的访问频率,如果访问频率超过阀值,就转向验证码页面让用户填写验证码
限制单个ip/api token的访问量比如15分钟限制访问页面180次,具体标准可参考一些大型网站的公开api,如twitter api,对于抓取用户公开信息的爬虫要格外敏感
识别出合法爬虫对http头agent进行验证,是否标记为、网络的spider,严格一点的话应该判别来源IP是否为、的爬虫IP,这些IP在网上都可以找到。校验出来IP不在白名单就可以阻止访问内容。
蜜罐资源爬虫解析离不开正则匹配,适当在页面添加一些正常浏览器浏览访问不到的资源,一旦有ip访问,过滤下头部是不是搜素引擎的蜘蛛,不是就可以直接封了。比如说隐式链接。
10. 如何应对网站反爬虫策略如何高效地爬大量数据
一、构建合理的HTTP请求头
HTTP的请求头是在你每次向网络服务器发送请求时,传递的一组属性和配置信息。由于浏览器和Python爬虫发送的请求头不同,有可能被反爬虫检测出来。
二、设置cookie的学问
Cookie是一把双刃剑,有它不行,没它更不行。网站会通过cookie跟踪你的访问过程,如果发现你有爬虫行为会立刻中断你的访问,比如你特别快的填写表单,或者短时间内浏览大量页面。而正确地处理cookie,又可以避免很多采集问题,建议在采集网站过程中,检查一下这些网站生成的cookie,然后想想哪一个是爬虫需要处理的。
三、正常的时间访问路径
合理控制采集速度,是Python爬虫不应该破坏的规则,尽量为每个页面访问时间增加一点儿间隔,可以有效帮助你避免反爬虫。
四、使用http
对于分布式爬虫和已经遭遇反爬虫的人来说,使用http将成为你的首选。Ipidea分布地区广,可满足分布式爬虫使用需要。支持api提取,对Python爬虫来说再适合不过。