导航:首页 > 无线网络 > 无线传感网络的协议结构

无线传感网络的协议结构

发布时间:2022-07-21 00:41:48

① s-mac协议针对这些因素采取了哪些措施

S-MAC协议是在IEEE 802.11协议的SC9636-006基础上针对传感器网络节省能量的需求设计的。S-MAC包括了从各种能量消耗方式中节省能耗的方法,比如:空闲侦听、冲突、串音和控制开销。在描述 S-MAC的构成之前,我们首先概述关于无线传感网络及其应用的设想。
无线传感网络的MAC协议的S-MAC协议概述
传感网络由多个节点组成,利用短距离多跳通信来保存能量,大部分通信都发生在对等节点之间。网内处 理对网络生存期很重要,也就是暗示数据将作为整个消息以存储转发的方式进行处理。最后,我们假设应用 将具有很长一段空闲时间,并且能够容忍网络传递时间顺序的延迟。
1.周期性侦听和休眠
如上所述,在多数传感网络应用中,如果没有感测到事件发生,节点将长期空闲。我们假设这样一个事实 ,在该段时期内数据速率非常低,因此没有必要使节点一直保持侦听。S——MAC通过让节点处于周期休眠状态 来降低侦听时间,每个节点休眠一段时间,然后唤醒并侦听是否有其他节点想和它通信。在休眠期间,节点 关闭无线装置,并设置定时器,随后来唤醒自己。
侦听和休眠的一个完整周期被称为一帧。侦听间隔通常是固定的,根据物理层和MAC层的参数来决定,比 如无线带宽和竞争窗口大小。占空比指侦听间隔与整个帧长度之比。休眠间隔可能根据不同的应用需求而改 变,它实际上改变占空比。简单而言,这些值对所有的节点都是一样的,所有节点都可以自由选择它们各自 的侦听/休眠时间表。然而,为了降低控制开销,我们更希望邻居节点保持同步,也就是说它们同时侦听和 同时进入休眠。值得注意的是,在多跳网络中不是所有的邻居节点都能够保持同步。如果节点A和节点B必须 分别与不同的节点C和节点D同步,那么节点A和节点B可能具有不同的时间表,邻居节点A和B具有不同的时间表,它们分别与节点C和节点D保持同步。
节点通过周期地向它们的直接邻居广播SYNC包来交换它们的时间表。一个节点在预定侦听时间与它的邻居 节点通信,以确保所有邻居节点能够通信,即使它们具有不同的时间表。比如,如果节点A想与 节点B通信,节点A必须等待直到节点B在侦听c一个节点发送一个SYNC包的时间称为同步时间。S——MAC的一个 特征是它将节点形成一个平面型的对等拓扑结构,不像簇协议,SMAC不需要通过簇头协作。相反,节点在公 用时间表形成虚拟簇,与对等节点之间直接通信。该方法的一个优点是在拓扑发生变化时,它比基于簇方法 健壮。该机制的不足是由于周期休眠增加了延迟,而且,延迟有可能在每跳积聚。
2.冲突避免
如果多个邻居节点同时想与一个节点通信,它们将试图在该节点开始侦听时发送消息,在该情况下,它们需要竞争媒体。在竞争协议中,IEEE 802.II在冲突避免这方面做得很好。S——MAC遵循类似的流程,包括虚拟载波侦听和物理载波侦听,解决隐藏终端问题的RTS/CTS(请求发送/清除发送)交换。每个传输包中都有一个持续时闾域来标识该包要传输多长时间,如果一个节点收到一个传输给另外一个节点的包,该节点就能从持续时间域知道在多长时间内不能发送数据。节点以变量形式记录该值,被称为网络分配矢量(NAV),NAV可以被看成一个计时器,每次计时器开始计时,节点递减它的NAV,直到减少到0。在传输之前,节点首先检查它的NAV,如果它的值不为0,节点就认为媒体忙,这被称为虚拟载波侦听。物理载波侦听在物理层执行,通过侦听信道进行可能的传输。载波侦听时间是竞争窗口内的一个随机值,以避免冲突和饥饿现象。如果虚拟载波侦听和物理载波侦听都标识媒体空闲,那么媒体就是空闲的。
在开始传输前,所有发送者都执行载波侦听。如果一个节点没有获得媒体,它将进入休眠,当接收机空闲和再一次侦听时唤醒。广播分组的发送不需要RTS/CTS,单播分组在发送者和接收者之间遵循RTS/CTS/DATA/ACK序列。RTS和CTS成功交换后,两个节点将利用它们的休眠时间进行数据分组传输,直到它们完成传输后才遵循它们的休眠时间表。在每个侦听间隔内,由于占空比操作和竞争机制,S-MAC有效地标识由于侦听和碰撞产生的能量消耗。
4.S-MAC协议实现的关键技术如下。
(1)数据包的嵌套结构
在S-MAC协议中,上一层数据包包含了下一层数据包的内容。数据包传送到哪一层,那一层只需要处理属于它的部分。
(2)堆栈结构和功能
在S-MAC协议堆栈内,当MAC层接收到上层传送过来的数据包后,它就开始载波侦听。如果结果显示MAC层空闲,它就会把数据传到物理层;如果MAC层忙,它将会进入睡眠状态,直到下一个可用时间的到来,再重新发送。当MAC层在收到物理层传送过来的数据包后,先通过循环冗余校验(CRC)表示没有错误,MAC层就会将数据包传向上层。
(3)选择和维护调度表
在开始周期性侦听和睡眠之前,每个节点都需要选择睡眠调度机制并与邻居节点一致。如何选择和保持调度机制分为以下3种情况。
①节点在侦听时间内,如果它没有侦听到其他节点的睡眠调度机制,则立即选择一个睡眠调度机制。
②当节点在选择和宣布自己的调度机制之前,收到了邻居节点广播的睡眠调度机制,它将采用邻居节点的睡眠调度机制。
③当节点在选择和广播自已的睡眠调度机制之后,收到几种不同的睡眠调度机制时,就要分以下两种情况考虑:当节点没有邻居节点时,它会舍弃自己当前的睡眠调度机制,采用刚接收到的睡眠调度机制;当节点有一个或更多邻居节点时,它将同时采用不同的调度机制。
(4)时间同步
在S-MAC协议中,节点与邻居节点需要保持时间同步来同时侦听和睡眠。S-MAC协议采用的是相对而不是绝对的时间戳,同时使侦听时间远大于时钟误差和漂移,来减少同步误差,并且节点会根据收到的邻居节点的数据包来更新自己的时间,从而与邻居节点保持时间同步。
(5)带冲突避免的载波侦听多路访问
带冲突避免的载波侦听多路访问( CSMA/CA)的基本机制是在接收者和发送者之间建立一个握手机制来传输数据。
握手机制是:由发送端发送一个请求发送( RTS)包给它的接收者,接收者在收到以后就回复一个准备接收(CTS)包,发送端在收到CTS包后,开始发送数据包,RTS与CTS之间的握手是为了使发送端和接收端的邻居节点知道它们正在进行数据传输,从而减少传输碰撞。
(6)网络分配矢量
在S-MAC协议中,每个节点都保持了一个网络分配矢量(NAV)来表示邻居节点的活动时间,S-MAC协议中在每个数据包中都包含了一个持续时间指示值,持续时间指示值表示目前这个通信需要持续的时间。邻居节点收到发送者或接收者发往其他节点的数据包时,就可以知道它需要睡眠多久,即用数据包中的持续时间更新NAV昀值,当NAV的值不为零时,节点应该进入睡眠状态来避免串音。当NAV变为零时,它就马上醒来,准备进行通信。
与IEEE 802.11 MAC相比,S-MAC协议尽量延长其他节点的休眠时间,降低了碰撞概率,减少了空闲侦听所消耗的能源;通过流量自适应的侦听机制,减少消息在网络中的传输延迟;采用带内信令来减少重传和避免监听不必要的数据;通过消息分割和突发传递机制来和带内数据处理来减少控制消息的开销和消息的传递延迟。因而S-MAC协议具有很好的节能特性,这对无线传感网络的需求和特点来说是合理的,但是由于S-MAC中占空比固定不变,因此它不能很好地适应网络流量的变化,而且协议的实现非常复杂,需要占用大量的存储空间。这个对于资源受限的传感器节点尤为突出。

② 无线传感器网络通信协议的目录

第1章 无线传感器网络概述
1.1 引言
1.2 无线传感器网络介绍
1.2.1 无线传感器网络体系结构
1.2.2 无线传感器网络的特点和关键技术
1.2.3 无线传感器网络的应用
1.3 无线传感器网络路由算法
1.3.1 无线传感器网络路由算法研究的主要思路
1.3.2 无线传感器网络路由算法的分类
1.3.3 无线传感器网络QoS路由算法研究的基本思想
1.3.4 无线传感器网络QoS路由算法研究的分类
1.3.5 平面路由的主流算法
1.3.6 分簇路由的主流算法
1.4 ZigBee技术
1.4.1 ZigBee技术的特点
1.4.2 ZigBee协议框架
1.4.3 ZigBee的网络拓扑结构
1.5 无线传感器安全研究
1.5.1 无线传感器网络的安全需求
1.5.2 无线传感器网络安全的研究进展
1.5.3 无线传感器网络安全的研究方向
1.6 水下传感器网络
1.7 无线传感器网络定位
1.7.1 存在的问题
1.7.2 性能评价
1.7.3 基于测距的定位方法
1.7.4 非测距定位算法
1.7.5 移动节点定位
第2章 无线传感器网络的分布式能量有效非均匀成簇算法
2.1 引言
2.2 相关研究工作
2.2.1 单跳成簇算法
2.2.2 多跳成簇算法
2.3 DEEUC成簇路由算法
2.3.1 网络模型
2.3.2 DEEUC成簇算法
2.3.3 候选簇头的产生
2.3.4 估计平均能量
2.3.5 最终簇头的产生
2.3.6 平衡簇头区节点能量
2.3.7 算法分析
2.4 仿真和分析
2.5 结论及下一步工作
参考文献
第3章 无线传感器网络分簇多跳能量均衡路由算法
3.1 无线传输能量模型
3.2 无线传感器网络路由策略研究
3.2.1 平面路由
3.2.2 单跳分簇路由算法研究
3.2.3 多跳层次路由算法研究
3.3 LEACH-L算法
3.3.1 LEACH-L的改进思路
3.3.2 LEACH-L算法模型
3.3.3 LEACH-L描述
3.4 LEACH-L的分析
3.5 实验仿真
3.5.1 评价参数
3.5.2 仿真环境
3.5.3 仿真结果
3.6 总结及未来的工作
3.6.1 总结
3.6.2 未来的工作
参考文献
第4章 基于生成树的无线传感器网络分簇通信协议
4.1 引言
4.2 无线传输能量模型
4.3 基于时间延迟机制的分簇算法(CHTD)
4.3.1 CHTD的改进思路
4.3.2 CHTD簇头的产生
4.3.3 CHTD簇头数目的确定
4.3.4 CHTD最优簇半径
4.3.5 CHTD描述
4.3.6 CHTD的特性
4.4 CHTD簇数据传输研究
4.4.1 引言
4.4.2 改进的CHTD算法(CHTD-M)
4.4.3 CHTD-M的分析
4.5 仿真分析
4.5.1 生命周期
4.5.2 接收数据包量
4.5.3 能量消耗
4.5.4 负载均衡
4.6 总结及未来的工作
4.6.1 总结
4.6.2 未来的工作
参考文献
第5章 基于自适应蚁群系统的传感器网络QoS路由算法
5.1 引言
5.2 蚁群算法
5.3 APAS算法的信息素自适应机制
5.4 APAS算法的挥发系数自适应机制
5.5 APAS算法的QoS改进参数
5.6 APAS算法的信息素分发机制
5.7 APAS算法的定向广播机制
5.8 仿真实验及结果分析
5.8.1 仿真环境
5.8.2 仿真结果及分析
5.9 总结及未来的工作
5.9.1 总结
5.9.2 未来的工作
参考文献
第6章 无线传感器网络簇头选择算法
6.1 引言
6.2 LEACH NEW算法
6.2.1 网络模型
6.2.2 LEACH NEW簇头选择机制
6.2.3 簇的生成
6.2.4 簇头间多跳路径的建立
6.3 仿真实现
6.4 结论及未来的工作
参考文献
第7章 水下无线传感网络中基于向量的低延迟转发协议
7.1 引言
7.2 相关工作
7.3 网络模型
7.3.1 问题的数学描述
7.3.2 网络模型
7.4 基于向量的低延迟转发协议
7.4.1 基于向量转发协议的分析
7.4.2 基于向量的低延迟转发算法
7.5 仿真实验
7.5.1 仿真环境
7.5.2 仿真分析
7.6 总结
参考文献
第8章 无线传感器网络数据融合算法研究
8.1 引言
8.2 节能路由算法
8.2.1 平面式路由算法
8.2.2 层状式路由算法
8.3 数据融合模型
8.3.1 数据融合系统
8.3.2 LEACH簇头选择算法
8.3.3 簇内融合路径
8.3.4 环境设定和能耗公式
8.4 数据融合仿真
8.4.1 仿真分析
8.4.2 仿真结果分析
8.5 结论
参考文献
第9章 无线传感器网络相关技术
9.1 超宽带技术
9.1.1 系统结构的实现比较简单
9.1.2 空间传输容量大
9.1.3 多径分辨能力强
9.1.4 安全性高
9.1.5 定位精确
9.2 物联网技术
9.2.1 物联网原理
9.2.2 物联网的背景与前景
9.3 云计算技术
9.3.1 SaaS软件即服务
9.3.2 公用/效用计算
9.3.3 云计算领域的Web服务
9.4 认知无线电技术
9.4.1 传统的Ad-hoc方式中无线传感器网络的不足
9.4.2 在ZigBee无线传感器网络中的应用
参考文献
第10章 无线传感器网络应用
10.1 军事应用
10.2 农业应用
10.3 环保监测
10.4 建筑应用
10.5 医疗监护
10.6 工业应用
10.6.1 工业安全
10.6.2 先进制造
10.6.3 交通控制管理
10.6.4 仓储物流管理
10.7 空间、海洋探索
10.8 智能家居应用

③ 无线传感器网络可能采用哪些无线通信方式

基于XL.SN智能传感网络的无线传感器数据采集传输系统,可以实现对温度,压力,气体,温湿度,液位,流量,光照,降雨量,振动,转速等数据参数的实时采集,无线传输,无线监控与预警。在实际应用中,无线传感器数据采集传输系统常见的包括深圳信立科技农业物联网智能大棚环境监控系统,智慧养殖环境监控系统,智慧管网管沟监控系统,仓储馆藏环境监控系统,机房实验室环境监控系统,危险品仓库环境监控系统,大气环境监控系统,智能制造运行过程监控系统,能源管理系统,电力监控系统等。
无线传感器数据采集传输系统,比较常用的的无线数据传输组网技术包括433MHZ,Zigbee(2.4G),运营商网络(GPRS)等三种方式,其中433MHZ,Zigbee(2.4G)属于近距离无线通讯技术,并且都使用ISM免执照频段。运营商网络(GPRS)属于远距离无线通讯技术,按数据流量收费。
1、基于Zigbee(2.4G)的智能传感网络
ZigBee的特点是低功耗、高可靠性、强抗干扰性,布网容易,通过无线中继器可以非常方便地将网络覆盖范围扩展至数十倍,因此从小空间到大空间、从简单空间环境到复杂空间环境的场合都可以使用。但相比于WiFi技术,Zigbee是定位于低传输速率的应用,因此Zigbee显然不适合于高速上网、大文件下载等场合。对于餐饮行业的无线点餐应用,由于其数据传输量一般来说都不是很大,因此Zigbee技术是非常适合该应用的。

2、基于433MHz的智能传感网络
433MHz技术使用433MHz无线频段,因此相比于WiFi和Zigbee,433MHz的显着优势是无线信号的穿透性强、能够传播得更远。但其缺点也是很明显的,就是其数据传输速率只有9600bps,远远小于WiFi和Zigbee的数据速率,因此433Mhz技术一般只适用于数据传输量较少的应用场合。从通讯可靠性的角度来讲,433Mhz技术和WiFi一样,只支持星型网络的拓扑结构,通过多基站的方式实现网络覆盖空间的扩展,因此其无线通讯的可靠性和稳定性也逊于Zigbee技术。另外,不同于Zigbee和WiFi技术中所采用的加密功能,433Mhz网络中一般采用数据透明传输协议,因此其网络安全可靠性也是较差的。

3、基于运营商的智能传感网络
GPRS无线传输设备主要针对工业级应用,是一款内嵌GSM/GPRS核心单元的无线Modem,采用GSM/GPRS网络为传输媒介,是一款基于移动GSM短消息平台和GPRS数据业务的工业级通讯终端。它利用GSM 移动通信网络的短信息和GPRS业务为用户搭建了一个超远距离的数据传输平台。
标准工业规格设计,提供RS232标准接口,直接与用户设备连接,实现中英文短信功能,彩信功能,GPRS数据传输功能。具有完备的电源管理系统,标准的串行数据接口。外观小巧,软件接口简单易用。可广泛应用于工业短信收发、GPRS实时数据传输等诸多工业与民用领域。

④ zigbee无线传感器网络是大量传感器节点以什么方式构成的

ZigBee是一种近距离、低功耗、低速率、低成本的无线网络技术,主要用于近距离网状网连接。Zigbee有如下优点:

  1. 低功耗。在低耗电待机模式下,2节5号干电池可支持1个节点工作6~24个月,甚至更长。这是ZigBee的突出优势。相比之下蓝牙可以工作数周、WiFi可以工作数小时。

  2. 2.低成本。通过大幅简化协议(不到蓝牙的1/10),降低了对通信控制器的要求,以8051的8位微控制器测算,全功能的主节点需要32KB代码,子功能节点少至4KB代码,而且ZigBee免协议专利费。每块芯片的价格大约为2美元。

  3. 3.低速率。ZigBee工作在20~250kbps的速率,分别提供250 kbps(2.4GHz)、40kbps(915 MHz)和20kbps(868 MHz)的原始数据吞吐率,满足低速率传输数据的应用需求。

  4. 4.近距离。传输范围一般介于10~100m之间,在增加发射功率后,亦可增加到1~3km。这指的是相邻节点间的距离。如果通过路由和节点间通信的接力,传输距离将可以更远。

  5. 5.短时延。ZigBee的响应速度较快,一般从睡眠转入工作状态只需15ms,节点连接进入网络只需30ms,进一步节省了电能。相比较,蓝牙需要3~10s、WiFi 需要3 s。

  6. 6.高容量。ZigBee可采用星状、片状和网状网络结构,由一个主节点管理若干子节点,最多一个主节点可管理254个子节点;同时主节点还可由上一层网络节点管理,最多可组成65000 个节点的大网。

  7. 7.高安全。ZigBee提供了三级安全模式,包括无安全设定、使用访问控制清单(Access Control List, ACL) 防止非法获取数据以及采用高级加密标准(AES 128)的对称密码,以灵活确定其安全属性。

  8. 8.免执照频段。使用工业科学医疗(ISM)频段,915MHz(美国), 868MHz(欧洲), 2. 4GHz(全球) 。这三个频带的扩频和调制方式亦有区别。

总的来讲,Zigbee最大的优点是:低功耗(但是只针对终端节点来讲)、组网灵活(网络中设备较多时有优势)、低成本(相对蓝牙和WiFi来将的)

⑤ 什么是无线传感技术

早在上世纪70年代,就出现了将传统传感器采用点对点传输、连接传感控制器而构成传感网络雏形,我们把它归之为第一代传感器网络。随着相关学科的不断发展和进步,传感器网络同时还具有了获取多种信息信号的综合处理能力,并通过与传感控制的相联,组成了有信息综合和处理能力的传感器网络,这是第二代传感器网络。而从上世纪末开始,现场总线技术开始应用于传感器网络,人们用其组建智能化传感器网络,大量多功能传感器被运用,并使用无线技术连接,无线传感器网络逐渐形成。

无线传感器网络是新一代的传感器网络,具有非常上世纪70年代,其发展和应用,将会给人类的生活和生产的各个领域带来深远影响。

无线传感器网络可以看成是由数据获取网络、数据颁布网络和控制管理中心三部分组成的。其主要组成部分是集成有传感器、处理单元和通信模块的节点,各节点通过协议自组成一个分布式网络,再将采集来的数据通过优化后经无线电波传输给信息处理中心。

⑥ 无线传感器网络具有怎样的协议栈结构

物理层
数据链路层
网络层
传输层
应用层

⑦ 无线传感器网络协议层次结构图是什么样的

你说的不知道是不是WN60无线传感器的自动组网,信立科技WN60无线传感器说明文档上有相关的参数介绍。

⑧ 无线传感器网络MAC协议有哪些基本分类

没有统一的MAC协议分类方式,但是大体依据标准分为三种,如根据网络拓扑结构方式(分布式和集中式控制);使用单一或多信道方式;采用固定分配信道还是随机访问信道方式。
已有的参考文献也将无线传感器网络MAC协议分为三类:确定性分配、竞争占用和随机访问。前两者不是传感器网络的理想选择。因为TDMA固定时隙的发送模式功耗过大,为了节省功耗,空闲状态应关闭发射机。竞争占用方案需要实时监测信道状态也不是一种合理的选择。随机介质访问模式比较适合于无线传感网络的节能要求。
下面介绍根据信道分配使用方式,将无线传感器网络MAC协议分为基于无线信道随机竞争方式和时分复用方式及基于时分和频分复用等其他混合方式三种。
1) 无线信道随机竞争接入方式(CSMA)

节点需要发送数据时采用随机方式使用无线信道,典型的如采用载波监听多路访问(CSMA)的MAC协议,需要注意隐藏终端和暴露终端问题,尽量减少节点间的干扰。

2) 无线信道时分复用无竞争接入方式(TDMA)

采用时分复用(TDMA)方式给每个节点分配了一个固定的无线信道使用时段,可以有效避免节点间的干扰。

3) 无线信道时分/频分/码分等混合复用接入方式(TDMA/FDMA/CDMA)

通过混合采用时分和频分或码分等复用方式,实现节点间的无冲突信道分配策略。

阅读全文

与无线传感网络的协议结构相关的资料

热点内容
网络共享中心没有网卡 浏览:527
电脑无法检测到网络代理 浏览:1377
笔记本电脑一天会用多少流量 浏览:597
苹果电脑整机转移新机 浏览:1381
突然无法连接工作网络 浏览:1080
联通网络怎么设置才好 浏览:1230
小区网络电脑怎么连接路由器 浏览:1058
p1108打印机网络共享 浏览:1215
怎么调节台式电脑护眼 浏览:720
深圳天虹苹果电脑 浏览:956
网络总是异常断开 浏览:618
中级配置台式电脑 浏览:1017
中国网络安全的战士 浏览:638
同志网站在哪里 浏览:1422
版观看完整完结免费手机在线 浏览:1464
怎样切换默认数据网络设置 浏览:1114
肯德基无线网无法访问网络 浏览:1290
光纤猫怎么连接不上网络 浏览:1500
神武3手游网络连接 浏览:969
局网打印机网络共享 浏览:1005