导航:首页 > 无线网络 > 反函数怎么求

反函数怎么求

发布时间:2022-01-16 03:23:37

㈠ 反函数怎么求 答案不懂

把函数当方程,解出x.
然后,把x换y,y换x。
求出原函数值域,它就是反函数的定义域。

㈡ 反函数怎么求

可以使用arccos计算公式:cos(arcsinx)=√(1-x^2)计算。

一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f-1(y) 。反函数x=f-1(y)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。

一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f-1(y)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标"−1"指的是函数幂,但不是指数幂。



(2)反函数怎么求扩展阅读:

反函数存在定理

定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。在证明这个定理之前先介绍函数的严格单调性。

设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1<x2时,有y1<y2,则称y=f(x)在D上严格单调递增;当x1<x2时,有y1>y2,则称y=f(x)在D上严格单调递减。

证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y。

而由于f的严格单增性,对D中任一x'<x,都有y'<y;任一x''>x,都有y''>y。总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1。

任取f(D)中的两点y1和y2,设y1<y2。因为f存在反函数f-1,所以有x1=f-1(y1),x2=f-1(y2),且x1、x2∈D。

若此时x1≥x2,根据f的严格单增性,有y1≥y2,这和我们假设的y1<y2矛盾。

因此x1<x2,即当y1<y2时,有f-1(y1)<f-1(y2)。这就证明了反函数f-1也是严格单增的。

㈢ 反函数的求法。 已知一个函数,如何求这个函数的反函数。

求反函数的步骤:

1、反解方程,将x看成未知数,y看成已知数,解出x的值。

2、将这个式子中的x,y兑换位置,就得到反函数的解析式。

3、求反函数的定义域,这个是很重要的一点,反函数的定义域是原函数的值域。

则转变成求原函数的值域问题,求出了解析式,求出了定义域,就完成了反函数的求解。

例如:f(x)=2^x+1的反函数

求原函数的定义域,y>1,以备作反函数的定义域;

从y=2^x +1中解出x=log2(y-1);

x,与y互换,得反函数

y=log2(x-1)

在求反函数的求法中是必须要调换x和y的。

反函数也是函数,是函数的话,一般用x表示自变量,y表示函数。既是习惯,也是约定。

(3)反函数怎么求扩展阅读:

常见的反函数:

三角函数特殊一点,如arcsin(x)因值域为[-π/2,π/2],需要分段求(向上或向下平移):

y=sinx (-π/2≤x≤π/2)

反函数y=arcsinx

y=sinx (π/2≤x≤3π/2)

反函数y=π-arcsinx

y=sinx (3π/2≤x≤5π/2)

反函数y=2π+arcsinx

㈣ 反函数怎么求

1.先求出原函数的值域,因为原函数的值域就是反函数的定义域
(我们知道函数的三要素是定义域,值域,对应法则,所以先求反函数的定义域是球反函数的第一步)
2.反解x,也就是用y来表示x
3.改写,交换位置,也就是把x改成y,把y改成x
4.写出反函数及其定义域

㈤ 数学反函数怎么求 有例题

  1. 先写成 y=f(x)=(x+13)/(4x-1);

  2. 再把x用y表示;

  3. x+13=y*(4x-1)=4xy-y;

  4. (4y-1)*x=y+13;

  5. x=(y+13)/(4y-1)

  6. 再把x写成f(x)^(-1),y写成x,就得反函数。

所以,反函数 f^(-1)=(x+13)/(4x-1)。

(5)反函数怎么求扩展阅读:

一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为y=f -1(x)。存在反函数的条件是原函数必须是一一对应的(不一定是整个数域内的)。

一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= g(y). 若对于y在C中的任何一个值,通过x= g(y),x在A中都有唯一的值和它对应,那么,x= g(y)就表示y是自变量,x是因变量是y的函数,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1) (x) 反函数y=f^(-1) (x)的定义域、值域分别是函数y=f(x)的值域、定义域.

㈥ 如何求反函数

1、首先看这个函数是不是单调函数,如果不是则反函数不存在如果是单调函数,则只要把x和y互换,然后解出y即可。

2、例如:

y=x^2,x=正负根号y,则f(x)的反函数是正负根号x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。

(6)反函数怎么求扩展阅读:

1、反函数的性质:

(1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;

(2)一个函数与它的反函数在相应区间上单调性一致;

(3)大部分偶函数不存在反函数(当函数y=f(x), 定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} )。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。

(4)一段连续的函数的单调性在对应区间内具有一致性;

(5)严增(减)的函数一定有严格增(减)的反函数;

(6)反函数是相互的且具有唯一性;

(7)定义域、值域相反对应法则互逆(三反);

(8)反函数的导数关系:如果x=f(y)在开区间I上严格单调,可导,且f'(y)≠0,那么它的反函数y=f-1(x)在区间S={x|x=f(y),y∈I }内也可导,且:

(9)y=x的反函数是它本身。

2、反函数存在定理:

严格单调函数必定有严格单调的反函数,并且二者单调性相同。

㈦ 函数的反函数怎么求

首先看这个函数是不是单调函数,如果不是则反函数不存在。如果是单调函数,则只要把x和y互换,然后解出y即可。例如 y=x^2,x=正负根号y,则f(x)的反函数是正负根号x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。
求反函数先判断反函数是否存在,严格单调函数必定有严格单调的反函数,并且二者单调性相同,再判断该函数与它的反函数在相应区间上单调性是否一致,例如 求 y=x^2 的反函数。x=±根号y,则 f(x) 的反函数是正负根号 x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。
反函数的定义是:设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,大部分偶函数不存在反函数。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。
反函数是对一个给定函数做逆运算的函数,一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1)(x) 。反函数存在的条件为原函数的函数关系必须是一一对应的(不一定是整个数域内的),它的定义域、值域分别是原函数的值域、定义域。
若一个奇函数存在反函数,则它的反函数也是奇函数。因此,在求反函数时要先确定是不是单调函数,如果是就把x和y互换,然后解出y即可。

㈧ 怎么求反函数

把y=f(x)当方程,解出x=Φ(y),对于任意一个y通过法则Φ:有唯一的x值与之对应,x也叫y的函数。一般在x=Φ(y),x换为y,y换为x,即y=Φ(x),也可以记为y=f⁻¹(x),

把y=f⁻¹(x)叫y=f(x)的反函数,其中原函数和反函数定义域值域互换,法则互逆。

一般求反函数的步骤:

1,确定原函数的值域。

2,把y=f(x)当方程,解出x=f⁻¹(y)

3,x,y互换得出y=f⁻¹(x),并根据原函数值域确定反函数的定义域。

阅读全文

与反函数怎么求相关的资料

热点内容
网络共享中心没有网卡 浏览:486
电脑无法检测到网络代理 浏览:1346
笔记本电脑一天会用多少流量 浏览:471
苹果电脑整机转移新机 浏览:1345
突然无法连接工作网络 浏览:956
联通网络怎么设置才好 浏览:1185
小区网络电脑怎么连接路由器 浏览:926
p1108打印机网络共享 浏览:1181
怎么调节台式电脑护眼 浏览:599
深圳天虹苹果电脑 浏览:837
网络总是异常断开 浏览:579
中级配置台式电脑 浏览:890
中国网络安全的战士 浏览:598
同志网站在哪里 浏览:1374
版观看完整完结免费手机在线 浏览:1427
怎样切换默认数据网络设置 浏览:1073
肯德基无线网无法访问网络 浏览:1249
光纤猫怎么连接不上网络 浏览:1371
神武3手游网络连接 浏览:933
局网打印机网络共享 浏览:970