㈠ 反函数怎么求 答案不懂
把函数当方程,解出x.
然后,把x换y,y换x。
求出原函数值域,它就是反函数的定义域。
㈡ 反函数怎么求
可以使用arccos计算公式:cos(arcsinx)=√(1-x^2)计算。
一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f-1(y) 。反函数x=f-1(y)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。
一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f-1(y)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标"−1"指的是函数幂,但不是指数幂。
(2)反函数怎么求扩展阅读:
反函数存在定理
定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。在证明这个定理之前先介绍函数的严格单调性。
设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1<x2时,有y1<y2,则称y=f(x)在D上严格单调递增;当x1<x2时,有y1>y2,则称y=f(x)在D上严格单调递减。
证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y。
而由于f的严格单增性,对D中任一x'<x,都有y'<y;任一x''>x,都有y''>y。总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1。
任取f(D)中的两点y1和y2,设y1<y2。因为f存在反函数f-1,所以有x1=f-1(y1),x2=f-1(y2),且x1、x2∈D。
若此时x1≥x2,根据f的严格单增性,有y1≥y2,这和我们假设的y1<y2矛盾。
因此x1<x2,即当y1<y2时,有f-1(y1)<f-1(y2)。这就证明了反函数f-1也是严格单增的。
㈢ 反函数的求法。 已知一个函数,如何求这个函数的反函数。
求反函数的步骤:
1、反解方程,将x看成未知数,y看成已知数,解出x的值。
2、将这个式子中的x,y兑换位置,就得到反函数的解析式。
3、求反函数的定义域,这个是很重要的一点,反函数的定义域是原函数的值域。
则转变成求原函数的值域问题,求出了解析式,求出了定义域,就完成了反函数的求解。
例如:f(x)=2^x+1的反函数
求原函数的定义域,y>1,以备作反函数的定义域;
从y=2^x +1中解出x=log2(y-1);
x,与y互换,得反函数
y=log2(x-1)
在求反函数的求法中是必须要调换x和y的。
反函数也是函数,是函数的话,一般用x表示自变量,y表示函数。既是习惯,也是约定。
(3)反函数怎么求扩展阅读:
常见的反函数:
三角函数特殊一点,如arcsin(x)因值域为[-π/2,π/2],需要分段求(向上或向下平移):
y=sinx (-π/2≤x≤π/2)
反函数y=arcsinx
y=sinx (π/2≤x≤3π/2)
反函数y=π-arcsinx
y=sinx (3π/2≤x≤5π/2)
反函数y=2π+arcsinx
㈣ 反函数怎么求
1.先求出原函数的值域,因为原函数的值域就是反函数的定义域
(我们知道函数的三要素是定义域,值域,对应法则,所以先求反函数的定义域是球反函数的第一步)
2.反解x,也就是用y来表示x
3.改写,交换位置,也就是把x改成y,把y改成x
4.写出反函数及其定义域
㈤ 数学反函数怎么求 有例题
先写成 y=f(x)=(x+13)/(4x-1);
再把x用y表示;
x+13=y*(4x-1)=4xy-y;
(4y-1)*x=y+13;
x=(y+13)/(4y-1)
再把x写成f(x)^(-1),y写成x,就得反函数。
所以,反函数 f^(-1)=(x+13)/(4x-1)。
(5)反函数怎么求扩展阅读:
一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为y=f -1(x)。存在反函数的条件是原函数必须是一一对应的(不一定是整个数域内的)。
一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= g(y). 若对于y在C中的任何一个值,通过x= g(y),x在A中都有唯一的值和它对应,那么,x= g(y)就表示y是自变量,x是因变量是y的函数,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1) (x) 反函数y=f^(-1) (x)的定义域、值域分别是函数y=f(x)的值域、定义域.
㈥ 如何求反函数
1、首先看这个函数是不是单调函数,如果不是则反函数不存在如果是单调函数,则只要把x和y互换,然后解出y即可。
2、例如:
y=x^2,x=正负根号y,则f(x)的反函数是正负根号x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。
(6)反函数怎么求扩展阅读:
1、反函数的性质:
(1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;
(2)一个函数与它的反函数在相应区间上单调性一致;
(3)大部分偶函数不存在反函数(当函数y=f(x), 定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} )。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
(4)一段连续的函数的单调性在对应区间内具有一致性;
(5)严增(减)的函数一定有严格增(减)的反函数;
(6)反函数是相互的且具有唯一性;
(7)定义域、值域相反对应法则互逆(三反);
(8)反函数的导数关系:如果x=f(y)在开区间I上严格单调,可导,且f'(y)≠0,那么它的反函数y=f-1(x)在区间S={x|x=f(y),y∈I }内也可导,且:
(9)y=x的反函数是它本身。
2、反函数存在定理:
严格单调函数必定有严格单调的反函数,并且二者单调性相同。
㈦ 函数的反函数怎么求
首先看这个函数是不是单调函数,如果不是则反函数不存在。如果是单调函数,则只要把x和y互换,然后解出y即可。例如 y=x^2,x=正负根号y,则f(x)的反函数是正负根号x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。
求反函数先判断反函数是否存在,严格单调函数必定有严格单调的反函数,并且二者单调性相同,再判断该函数与它的反函数在相应区间上单调性是否一致,例如 求 y=x^2 的反函数。x=±根号y,则 f(x) 的反函数是正负根号 x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。
反函数的定义是:设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,大部分偶函数不存在反函数。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。
反函数是对一个给定函数做逆运算的函数,一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1)(x) 。反函数存在的条件为原函数的函数关系必须是一一对应的(不一定是整个数域内的),它的定义域、值域分别是原函数的值域、定义域。
若一个奇函数存在反函数,则它的反函数也是奇函数。因此,在求反函数时要先确定是不是单调函数,如果是就把x和y互换,然后解出y即可。
㈧ 怎么求反函数
把y=f(x)当方程,解出x=Φ(y),对于任意一个y通过法则Φ:有唯一的x值与之对应,x也叫y的函数。一般在x=Φ(y),x换为y,y换为x,即y=Φ(x),也可以记为y=f⁻¹(x),
把y=f⁻¹(x)叫y=f(x)的反函数,其中原函数和反函数定义域值域互换,法则互逆。
一般求反函数的步骤:
1,确定原函数的值域。
2,把y=f(x)当方程,解出x=f⁻¹(y)
3,x,y互换得出y=f⁻¹(x),并根据原函数值域确定反函数的定义域。