导航:首页 > 无线网络 > 无线传感器网络质心算法例题

无线传感器网络质心算法例题

发布时间:2022-11-18 07:17:04

A. 有关无线传感器网络中时间同步机制有哪些方法和策略

1  时间同步技术的重要性 
传感器节点的时钟并不完美,会在时间上发生漂移,所以观察到的时间对于网络中的节点来说是不同的。但很多网络协议的应用,都需要一个共同的时间以使得网路中的节点全部或部分在瞬间是同步的。 
第一,传感器节点需要彼此之间并行操作和协作去完成复杂的传感任务。如果在收集信息过程中,传感器节点缺乏统一的时间戳(即没有同步),估计将是不准确的。 
第二,许多节能方案是利用时间同步来实现的。例如,传感器可以在适当的时候休眠(通过关闭传感器和收发器进入节能模式),在需要的时候再唤醒。在应用这种节能模式的时候,节点应该在同等的时间休眠和唤醒,也就是说当数据到来时,节点的接收器可以接收,这个需要传感器节点间精确的定时。 
2  时间同步技术所关注的主要性能参数 
时间同步技术的根本目的是为网络中节点的本地时钟提供共同的时间戳。对无线传感器
网络WSN(Wireless Sensor Networks)[1]
的时间同步应主要应考虑以下几个方面的问题: 
(1)能量效率。同步的时间越长,消耗的能量越多,效率就越低。设计WSN的时间同步算法需以考虑传感器节点有效的能量资源为前提。 
(2) 可扩展性和健壮性。时间同步机制应该支持网络中节点的数目或者密度的有效扩展,并保障一旦有节点失效时,余下网络有效且功能健全。 
(3)精确度。针对不同的应用和目的,精确度的需求有所不用。 
(4)同步期限。节点需要保持时间同步的时间长度可以是瞬时的,也可以和网络的寿命一样长。 
(5)有效同步范围。可以给网络内所有节点提供时间,也可以给局部区域的节点提供时间。 
(6)成本和尺寸。同步可能需要特定的硬件,另外,体积的大小也影响同步机制的实现。 (7)最大误差。一组传感器节点之间的最大时间差,或相对外部标准时间的最大差。 3  现有主要时间同步方法研究 
时间同步技术是研究WSN的重要问题,许多具体应用都需要传感器节点本地时钟的同步,要求各种程度的同步精度。WSN具有自组织性、多跳性、动态拓扑性和资源受限性,尤其是节点的能量资源、计算能力、通信带宽、存储容量有限等特点,使时间同步方案有其特
殊的需求,也使得传统的时间同步算法不适合于这些网络[2]
。因此越来越多的研究集中在设
计适合WSN的时间同步算法[3]
。针对WSN,目前已经从不同角度提出了许多新的时间同步算法[4]
。 
3.1  成对(pair-wise)同步的双向同步模式 
代表算法是传感器网络时间同步协议TPSN(Timing-Sync Protocol for Sensor 
Networks)[5~6]
。目的是提供WSN整个网络范围内节点间的时间同步。 
该算法分两步:分级和同步。第一步的目的是建立分级的拓扑网络,每个节点有个级别。只有一个节点与外界通信获取外界时间,将其定为零级,叫做根节点,作为整个网络系统的时间源。在第二步,每个i级节点与i-1(上一级)级节点同步,最终所有的节点都与根节点同步,从而达到整个网络的时间同步。详细的时间同步过程如图 1 所示。 
 

图1  TPSN 同步过程 
 
设R为上层节点,S为下层节点,传播时间为d,两节点的时间偏差为θ。同步过程由节点R广播开始同步信息,节点S接收到信息以后,就开始准备时间同步过程。在T1时刻,节点S发送同步信息包,包含信息(T1),节点R在T2接收到同步信息,并记录下接收时间T2,这里满足关系:21TTd 
节点R在T3时刻发送回复信息包,包含信息(T1,T2,T3)。在T4时刻S接收到同步信息包,满足关系:43TTd 
最后,节点S利用上述2个时间表达式可计算出的值:(21)(43)2
TTTT 
TPSN由于采用了在MAC层给同步包标记时间戳的方式,降低了发送端的不确定性,消除了访问时间带来的时间同步误差,使得同步效果更加有效。并且,TPSN算法对任意节点的同步误差取决于它距离根节点的跳数,而与网络中节点总数无关,使TPSN同步精度不会随节点数目增加而降级,从而使TPSN具有较好的扩展性。TPSN算法的缺点是一旦根节点失效,就要重新选择根节点,并重新进行分级和同步阶段的处理,增加了计算和能量开销,并随着跳数的增加,同步误差呈线性增长,准确性较低。另外,TPSN算法没有对时钟的频差进行估计,这使得它需要频繁同步,完成一次同步能量消耗较大。 
3.2  接收方-接收方(Receiver-Receiver)模式 
代表算法是参考广播时间同步协议RBS(Reference Broadcast Synchronization)[7]
。RBS是典型的基于接收方-接收方的同步算法,是Elson等人以“第三节点”实现同步的思想而提出的。该算法中,利用无线数据链路层的广播信道特性,基本思想为:节点(作为发
送者)通过物理层广播周期性地向其邻居节点(作为接收者)发送信标消息[10]
,邻居节点记录下广播信标达到的时间,并把这个时间作为参考点与时钟的读数相比较。为了计算时钟偏移,要交换对等邻居节点间的时间戳,确定它们之间的时间偏移量,然后其中一个根据接收
到的时间差值来修改其本地的时间,从而实现时间同步[11]
。 
假如该算法在网络中有n个接收节点m个参考广播包,则任意一个节点接收到m个参考包后,会拿这些参考包到达的时间与其它n-1个接收节点接收到的参考包到达的时间进行比较,然后进行信息交换。图2为RBS算法的关键路径示意图。 
网络接口卡
关键路径
接收者1
发送者
接收者2
 
图2  RBS算法的关键路径示意图 
 
其计算公式如下: 
,,1
1,:[,]()m
jkikkinjnoffsetijTTm
 其中n表示接收者的数量,m表示参考包的数量,,rbT表示接收节点r接收到参考包b时的时钟。 

此算法并不是同步发送者和接收者,而是使接收者彼此同步,有效避免了发送访问时间对同步的影响,将发送方延迟的不确定性从关键路径中排除,误差的来源主要是传输时间和接收时间的不确定性,从而获得了比利用节点间双向信息交换实现同步的方法更高的精确度。这种方法的最大弊端是信息的交换次数太多,发送节点和接收节点之间、接收节点彼此之间,都要经过消息交换后才能达到同步。计算复杂度较高,网络流量开销和能耗太大,不适合能量供应有限的场合。 
3.3  发送方-接收方(Sender-Receiver)模式 
基于发送方-接收方机制的时间同步算法的基本原理是:发送节点发送包含本地时间戳的时间同步消息,接收节点记录本地接收时间,并将其与同步消息中的时间戳进行比较,调整本地时钟。基于这种方法提出的时间同步算法有以下两种。 
3.3.1  FTSP 算法[8]
 
泛洪时间同步协议FTSP(Flooding Time Synchronization Protocol)由Vanderbilt大学Branislav Kusy等提出,目标是实现整个网络的时间同步且误差控制在微秒级。该算法用单个广播消息实现发送节点与接收节点之间的时间同步。 
其特点为:(1)通过对收发过程的分析,把时延细分为发送中断处理时延、编码时延、传播时延、解码时延、字节对齐时延、接收中断处理时延,进一步降低时延的不确定度;(2)通过发射多个信令包,使得接收节点可以利用最小方差线性拟合技术估算自己和发送节点的频率差和初相位差;(3)设计一套根节点选举机制,针对节点失效、新节点加入、拓扑变化
等情况进行优化,适合于恶劣环境[12]
。 
FTSP算法对时钟漂移进行了线性回归分析。此算法考虑到在特定时间范围内节点时钟晶振频率是稳定的,因此节点间时钟偏移量与时间成线性关系,通过发送节点周期性广播时间同步消息,接收节点取得多个数据对,构造最佳拟合直线,通过回归直线,在误差允许的时间间隔内,节点可直接通过它来计算某一时间节点间的时钟偏移量而不必发送时间同步消息进行计算,从而减少了消息的发送次数并降低了系统能量开销。 
FTSP结合TPSN和RBS的优点,不仅排除了发送方延迟的影响,而且对报文传输中接收方的不确定延迟(如中断处理时间、字节对齐时间、硬件编解码时间等)做了有效的估计。多跳的FTSP协议采用层次结构,根节点为同步源,可以适应大量传感器节点,对网络拓扑结构的变化和根节点的失效有健壮性,精确度较好。该算法通过采用MAC层时间戳和线性回归偏差补偿弥补相关的错误源,通过对一个数据包打多个时戳,进而取平均和滤除抖动较大的时戳,大大降低了中断和解码时间的影响。FTSP 采用洪泛的方式向远方节点传递时间基准节点的时间信息,洪泛的时间信息可由中转节点生成,因此误差累积不可避免。另外,FTSP的功耗和带宽的开销巨大。 
3.3.2  DMTS 算法[9]
 
延迟测量时间同步DMTS (delay measurement time synchronization) 算法的同步机制是基于发送方-接收方的同步机制。DMTS 算法的实现策略是牺牲部分时间同步精度换取较低的计算复杂度和能耗,是一种能量消耗轻的时间同步算法。 
DMTS算法的基本原理为:选择一个节点作为时间主节点广播同步时间,所有接收节点通过精确地测量从发送节点到接收节点的单向时间广播消息的延迟并结合发送节点时间戳,计算出时间调整值,接收节点设置它的时间为接收到消息携带的时间加上广播消息的传输延迟,调整自己的逻辑时钟值以和基准点达成同步,这样所有得到广播消息的节点都与主节点进行时间同步。发送节点和接收节点的时间延迟dt可由21()dtnttt得出。其中,nt为发送前导码和起始字符所需的时间,n为发送的信息位个数,t为发送一位所需时间;1t为接收节点在消息到达时的本地时间;2t为接收节点在调整自己的时钟之前的那一时刻记录的本地时间,21()tt是接收处理延迟。 

DMTS 算法的优点是结合链路层打时间戳和时延估计等技术,消除了发送时延和访问时延的影响,算法简单,通信开销小。但DMTS算法没有估计时钟的频率偏差,时钟保持同步的时间较短,没有对位偏移产生的时间延迟进行估计,也没有消除时钟计时精度对同步精度的影响,因此其同步精度比FTSP略有下降,不适用于定位等要求高精度同步的应用。 
基于发送方-接收方单向同步机制的算法在上述三类方法中需要发送的时间同步消息数目最少。发送节点只要发送一次同步消息,因而具有较低的网络流量开销和复杂度,减少了系统能耗。 
4  结论 
文章介绍了WSN时间同步算法的类型以及各自具有代表性的算法,分析了各算法的设计原理和优缺点。这些协议解决了WSN中时间同步所遇到的主要问题,但对于大型网络,已有的方法或多或少存在着一些问题:扩展性差、稳定性不高、收敛速度变慢、网络通信冲突、能耗增大。今后的研究热点将集中在节能和时间同步的安全性方面。这将对算法的容错性、有效范围和可扩展性提出更高的要求。 

B. 无线传感器网络的特点与应用

无线传感器网络是一种新型的传感器网络,其主要是由大量的传感器节点组成,利用无线网络组成一个自动配置的网络系统,并将感知和收集到的信息发给管理部门。目前无线传感器网络在军事、生态环境、医疗和家居方面都有一定应用,未来无线传感器网络的发展前景将是不可估量的。

一、无线传感器网络的特点

(一)节点数量多

在监测区通常都会安置许多传感器节点,并通过分布式处理信息,这样就能够提高监测的准确性,有效获取更加精确的信息,并降低对节点传感器的精度要求。此外,由于节点数量多,因此存在许多冗余节点,这样就能使系统的容错能力较强,并且节点数量多还能够覆盖到更广阔的监测区域,有效减少监测盲区。

(二)动态拓扑

无线传感器网络属于动态网络,其节点并非固定的。当某个节电出现故障或是耗尽电池后,将会退出网络,此外,还可能由于需要而被转移添加到其他的网络当中。

(三)自组织网络

无线传感器的节点位置并不能进行精确预先设定。节点之间的相互位置也无法预知,例如通过使用飞机播散节点或随意放置在无人或危险的区域内。在这种情况下,就要求传感器节点自身能够具有一定的组织能力,能够自动进行相关管理和配置。

(四)多跳路由

无线传感网络中,节点之间的距离通常都在几十到几百米,因此节点只能与其相邻的节点进行直接通信。如果需要与范围外的节点进行通信,就需要经过中间节点进行路由。无线传感网络中的多跳路由并不是专门的路由设备,所有传输工作都是由普通的节点完成的。

(五)以数据为中心

无线传感网络中的节点均利用编号标识。由于节点是随机分布的,因此节点的编号和位置之间并没有联系。用户在查询事件时,只需要将事件报告给网络,并不需要告知节点编号。因此这是一种以数据为中心进行查询、传输的方式。

(六)电源能力局限性

通常都是用电池对节点进行供电,而每个节点的能源都是有限的,因此一旦电池的能量消耗完,就是造成节点无法再进行正常工作。

二、无线传感器网络的应用

(一)环境监测应用

无线传感器可以用于进行气象研究、检测洪水和火灾等,在生态环境监测中具有明显优势。随着我国市场经济的不断发展,生态环境污染问题也越来越严重。我国是一个幅员辽阔、资源丰富的农业大国,因此在进行农业生产时利用无线传感器进行对生产环境变化进行监测能够为农业生产带来许多好处,这对我国市场经济的'不断发展有着重要意义。

(二)医疗护理应用

无线传感器网络通过使用互联网络将收集到的信息传送到接受端口,例如一些病人身上会有一些用于监测心率、血压等的传感器节点,这样医生就可以随时了解病人的病情,一旦病人出现问题就能够及时进行临时处理和救治。在医疗领域内传感器已经有了一些成功案例,例如芬兰的技术人员设计出了一种可以穿在身上的无线传感器系统,还有SSIM(Smart Sensors and Integrated Microsystems)等。

(三)智能家居建筑应用

文物保护单位的一个重要工作就是要对具有意义的古老建筑实行保护措施。利用无线传感器网络的节点对古老建筑内的温度是、湿度、关照等进行监测,这样就能够对建筑物进行长期有效的监控。对于一些珍贵文物的保存,对保护地的位置、温度和湿度等提前进行检测,可以提高展览品或文物的保存品质。例如,英国一个博物馆基于无线传感器网络设计了一个警报系统,利用放在温度底部的节点检测灯光、振动等信息,以此来保障文物的安全[5]。

目前我国基础建设处在高速发展期,建设单位对各种建设工程的安全施工监测越来越关注。利用无线传感器网络使建筑能够检测到自身状况并将检测数据发送给管理部门,这样管理部门就能够及时掌握建筑状况并根据优先等级来处理建筑修复工作。

另外,在家具或家电汇中设置无线传感器节点,利用无线网络与互联网络,将家居环境打造成一个更加舒适方便的空间,为人们提供更加人性化和智能化的生活环境。通过实时监测屋内温度、湿度、光照等,对房间内的细微变化进行监测和感知,进而对空调、门窗等进行智能控制,这样就能够为人们提供一个更加舒适的生活环境。

(四)军事应用

无线传感器网络具有低能耗、小体积、高抗毁等特性,且其具有高隐蔽性和高度的自组织能力,这为军事侦察提供有效手段。美国在20世纪90年代就开始在军事研究中应用无线传感器网络。无线传感器网络在恶劣的战场内能够实时监控区域内敌军的装备,并对战场上的状况进行监控,对攻击目标进行定位并能够检测生化武器。

目前无线传感器网络在全球许多国家的军事、研究、工业部门都得到了广泛的关注,尤其受到美国国防部和军事部门的重视,美国基于C4ISR又提出了C4KISR的计划,对战场情报的感知和信息综合能力又提出新的要求,并开设了如NSOF系统等的一系列军事无线传感器网络研究。

总之,随着无线传感器网络的研究不断深入和扩展,人们对无线传感器的认识也越来越清晰,然而目前无线传感器网络的在技术上还存在一定问题需要解决,例如存储能力、传输能力、覆盖率等。尽管无线传感器网络还有许多技术问题待解决使得现在无法广泛推广和运用,但相信其未来发展前景不可估量。

C. 无线传感器网络加权质心定位算法Matlab仿真的一些疑问。

你没有定义信标节点(BeaconAmount)的个数。不定义肯定报错啊。一下是我最近随便编的一段类似于质心算法的东西的核心部分,你的同学应该能看懂,有点帮助。
if num_of_neb_anchor(i)>1&&num_of_neb_anchor(i)<6
%如果未知节点i的邻居锚节点个数在2和5之间
fenmu(i)=0;
fenzi_x(i)=0;
fenzi_y(i)=0;
fenzi_z(i)=0;
for k=1:num_of_neb_anchor(i)
distant_rssi(i,k)=sqrt((node_x(i)-neighbor_anchor_x(i,k))^2+(node_y(i)-neighbor_anchor_y(i,k))^2+(node_z(i)-neighbor_anchor_z(i,k))^2);
fenmu(i)=fenmu(i)+1/distant_rssi(i,k);
fenzi_x(i)=fenzi_x(i)+neighbor_anchor_x(i,k)/distant_rssi(i,k);
fenzi_y(i)=fenzi_y(i)+neighbor_anchor_y(i,k)/distant_rssi(i,k);
fenzi_z(i)=fenzi_z(i)+neighbor_anchor_z(i,k)/distant_rssi(i,k);
end
esti_node_x(i)=fenzi_x(i)/fenmu(i);
esti_node_y(i)=fenzi_y(i)/fenmu(i);
esti_node_z(i)=fenzi_z(i)/fenmu(i);%未知节点的估计坐标
end

D. 质心算法matlab求讲解

自从网络文库和网络知道通道阻塞后,好久没回答问题了,今天抽空回答一下:
clear
clc
for i=1:1:10
for j=1:1:10
x(j+(i-1)*10)=(i-1)*10;
y(j+(i-1)*10)=(j-1)*10;
end
end
figure
plot(x,y,'.')

hold on
axis([0 100 0 100])
xy=[x;y]
hold on
xm=90;
ym=90;
n=50;%在原有100个点中随机产生50个点
for i=1:1:n
Sx(i)=rand(1,1)*xm;
Sy(i)=rand(1,1)*ym;
plot(Sx(i),Sy(i),'r*')
xlabel('x轴')
ylabel('y轴')
hold on
end
dm=30
m=100;%%%以上都知道,就是下面看不懂,求讲解
for j=1:1:n
SS=[Sx(j);Sy(j)];%选择一个点
k=0;
for i=1:1:m
d=norm((xy(:,i)-SS),2);%计算这个点和其它100点的距离(用欧式距离)
if d<=dm %距离小于阈值则记录
xx(j,i)=xy(1,i);
yy(j,i)=xy(2,i);
k=k+1;
else%距离太大就不记录(可以这么理解:将随机点的周围点作为一组,太远的点就不作为这一组了)
xx(j,i)=0;
yy(j,i)=0;
end
end
if k~=0%如果这个随机点所在的组不是空集,则计算该组的均值
cent(:,j)=[sum(xx(j,:));sum(yy(j,:))]/k;
else
cent(:,j)=0;
end
plot(cent(1,j),cent(2,j),'o')%画出这个组的质心(将一张图分为几组)
hold on
plot([cent(1,j) Sx(j)],[cent(2,j) Sy(j)],'R') %画出这个随机点所属于的质心
Title('Centroid')
hold on
MM=[cent(1,j);cent(2,j)]
e(j)=norm((MM-SS),2)/dm%计算误差(质心和随机点)
end
figure
axis([0 n 0 1])
j=1:1:n
plot(j,e(j) ,'-r.')%画出这50个点的误差,即距离质心的距离
hold on
Title('Centroid')
E=sum(e)/n

E. 无线传感器网络的连接可靠性模型有哪些

为了解决测量无线传感器网络可靠性的问题,提出一种可靠性评估模型,此模型综合考虑了基于容错的网络抗毁性和基于能效的网络寿命这两个主要因素。通过确定K-覆盖和K-连通,可有效评估自然失效和能量约束条件下的网络可靠性,同时可以延长网络寿命并提高网络的鲁棒性。实验结果表明在无线传感器网络中可靠性与传感器密度存在一定关系。通过实现可靠性模型中的最优化目标,满足了传感器覆盖率和网络连通率要求,提高了无线传感器网络的安全性能。http://www.big-bit.com
无线传感器网络W
SN(w ireless sensor net-w
orks)[1]是由一组稠密布置、随机撒布的传感器组成的无线自组织网络,以其随机布置、自组织、适应苛刻环境等优势,具有在多种场合满足军事信息获取的实时性、准确性、全面性等需求的潜力。然而,在大多数应用环境中对无线传感器网络

F. 无线传感器的应用实例

桥梁健康检测及监测桥梁结构健康监测(SHM)是一种基于传感器的主动防御型方法,可以弥补目前安全性能十分重要的结构中,把传感器网络安置到桥梁、建筑和飞机中,利用传感器进行SHM是一种可靠且不昂贵的做法,可以在第一时间检测到缺陷的形成。这种网络可以提早向维修人员报告在关键结构中出现的缺陷,从而避免灾难性事故。粮仓温湿度监测无线传感器网络技术在粮库粮仓温度湿度监测领域应用最为普遍,这是由于粮库粮仓温度湿度的测点多,分布广,使用纵横交错的信号线会降低防火安全系数,应用无线传感器网络技术具有低功耗,低成本,布线简单,安装方便,易于组网,便于管理维护等特点。混凝土浇灌温度监测在混凝土施工过程中,将数字温度传感器装入导热良好的金属套管内,可保证传感器对混凝土温度变化作出迅速的反应。每个温度监测金属管接入一个无线温度节点,整个现场的无线温度节点通过无线网络传输到施工监控中心,不需要在施工现场布放长电缆,安装布放方便,能够有效解决温度测量点因为施工人员损坏电缆造成的成活率较低的问题.地震监测通过使用由大量互连的微型传感器节点组成的传感器网络,可以对不同环境进行不间断的高精度数据搜集。采用低功耗的无线通信模块和无线通信协议可以使传感器网络的生命期延续很长时间。保证了传感器网络的实用性。无线传感器网络相对于传统的网络,其最明显的特色可以用六个字来概括即:“自组织,自愈合”。这些特点使得无线传感器网络能够适应复杂多变的环境,去监测人力难以到达的恶劣环境地区。BEETECH无线传感器网络节点体积小巧,不需现场拉线供电,非常方便在应急情况下进行灵活部署监测并预测地质灾害的发生情况。建筑物振动检测建筑物悬臂部分不会因为旁边公路及地铁交通所引发的振动而超过舒适度的要求;通过现场测量,收集数据以验证由公路及地铁交通所引发的振动与主楼悬臂振动之相互关系; 同时,通过模态分析得到主楼结构在小振幅脉动振动工况下前几阶振动模态的阻尼比,为将来进行结构的小振幅动力分析提供关键数据。本次应用采用高精度加速度传感器,捕捉大型结构微弱振动,同样适用于风载,车辆等引起的脉动测量。

G. 无线传感器网络的组成(三个部分,详细介绍)

很详细,你可以到书店去买这类的书看即可。

以下是来自网络:http://www.sensorexpert.com.cn/Article/wuxianchanganqiwang_1.html。

无线传感器网络组成和特点
发表时间:2012-11-14 14:28:00
文章出处:传感器专家网
相关专题:传感器基础
无线传感器网络的构想最初是由美国军方提出的,美国国防部高级研究所计划署(DARPA)于1978年开始资助卡耐基-梅隆大学进行分布式传感器网络的研究,这被看成是无线传感器网络的雏形。从那以后,类似的项目在全美高校间广泛展开,着名的有UCBerkeley的SmartDuST项目,UCLA的WINS项目,以及多所机构联合攻关的SensIT计划,等等。在这些项目取得进展的同时,其应用也从军用转向民用。在森林火灾、洪水监测之类的环境应用中,在人体生理数据监测、药品管理之类的医疗应用中,在家庭环境的智能化应用以及商务应用中都已出现了它的身影。目下,无线传感器网络的商业化应用也已逐步兴起。美国Crossbow公司就利用SMArtDust项目的成果开发出了名为Mote的智能传感器节点,还有用于研究机构二次开发的MoteWorkTM开发平台。这些产品都很受使用者的欢迎。

无线传感器网络可以看成是由数据获取网络、数据分布网络和控制管理中心三部分组成的。其主要组成部分是集成有传感器、数据处理单元和通信模块的节点,各节点通过协议自组成一个分布式网络,再将采集来的数据通过优化后经无线电波传输给信息处理中心。

因为节点的数量巨大,而且还处在随时变化的环境中,这就使它有着不同于普通传感器网络的独特“个性”。首先是无中心和自组网特性。在无线传感器网络中,所有节点的地位都是平等的,没有预先指定的中心,各节点通过分布式算法来相互协调,在无人值守的情况下,节点就能自动组织起一个测量网络。而正因为没有中心,网络便不会因为单个节点的脱离而受到损害。

其次是网络拓扑的动态变化性。网络中的节点是处于不断变化的环境中,它的状态也在相应地发生变化,加之无线通信信道的不稳定性,网络拓扑因此也在不断地调整变化,而这种变化方式是无人能准确预测出来的。

第三是传输能力的有限性。无线传感器网络通过无线电波进行数据传输,虽然省去了布线的烦恼,但是相对于有线网络,低带宽则成为它的天生缺陷。同时,信号之间还存在相互干扰,信号自身也在不断地衰减,诸如此类。不过因为单个节点传输的数据量并不算大,这个缺点还是能忍受的。

第四是能量的限制。为了测量真实世界的具体值,各个节点会密集地分布于待测区域内,人工补充能量的方法已经不再适用。每个节点都要储备可供长期使用的能量,或者自己从外汲取能量(太阳能)。

第五是安全性的问题。无线信道、有限的能量,分布式控制都使得无线传感器网络更容易受到攻击。被动窃听、主动入侵、拒绝服务则是这些攻击的常见方式。因此,安全性在网络的设计中至关重要。

H. 在无线传感器网络中,如何根据接收信号的强度来判断发送者的距离有具体的计算公式么

基于RSSI的定位
RSSI测量,一般利用信号传播的经验模型与理论模型。
对于经验模型,在实际定位前,先选取若干测试点,记录在这些点各基站收到的信号强度,建立各个点上的位置和信号强度关系的离线数据库(x,y,ss1,ss2,ss3)。在实际定位时,根据测得的信号强度(ss1′,ss2′,ss3′)和数据库中记录的信号强度进行比较,信号强度均方差最小的那个点的坐标作为节点的坐标。
对于理论模型,常采用无线电传播路径损耗模型进行分析。常用的传播路径损耗模型有:自由空间传播模型、对数距离路径损耗模型、哈它模型、对数一常态分布模型等。自由空间无线电传播路径损耗模型为:

式中,d为距信源的距离,单位为km;f为频率,单位为MHz;k为路径衰减因子。其他的模型模拟现实环境,但与现实环境还是有一定的差距。比如对数一常态分布模型,其路径损耗的计算公式为:

式中,Xσ是平均值为O的高斯分布随机变数,其标准差范围为4~10;k的范围在2~5之间。取d=1,代入式(1)可得,LOSS,即PL(d0)的值。此时各未知节点接收锚节点信号时的信号强度为:

RSSI=发射功率+天线增益一路径损耗(PL(d))
2.2 基于RSSI的三角形质心定位算法的数学模型
不论哪种模型,计算出的接收信号强度总与实际情况下有误差,因为实际环境的复杂性,换算出的锚节点到未知节点的距离d总是大于实际两节点间的距离。如图1所示,锚节点A,B,C,未知节点D,根据RSSI模型计算出的节点A和D的距离为rA;节点B和D的距离为rB;节点C和D的距离为rC。分别以A,B,C为圆心;rA,rB,rC为半径画圆,可得交叠区域。这里的三角形质心定位算法的基本思想是:计算三圆交叠区域的3个特征点的坐标,以这三个点为三角形的顶点,未知点即为三角形质心,如图2所示,特征点为E,F,G,特征点E点的计算方法为:

同理,可计算出F,G,此时未知点的坐标为由仿真得,在图2中,实际点为D;三角形质心算法出的估计点为M;三边测量法算出的估计点为N。可知,三角形质心算法的准确度更高。

3 基于RSSI的三角形质心算法过程
3.1 步骤
(1)锚节点周期性向周围广播信息,信息中包括自身节点ID及坐标。普通节点收到该信息后,对同一锚节点的RSSI取均值。
(2)当普通节点收集到一定数量的锚节点信息时,不再接收新信息。普通节点根据RSSI从强到弱对锚节点排序,并建立RSSI值与节点到锚节点距离的映射。建立3个集合。
锚节点集合:

(3)选取RSSI值大的前几个锚节点进行自身定位计算。
在B_set:中优先选择RSSI值大的信标节点组合成下面的锚节点集合,这是提高定位精度的关键。

对锚节点集合,依次根据(3)式算出3个交点的坐标,最后由质心算法,得出未知节点坐标。
(4)对求出的未知节点坐标集合取平均,得未知节点坐标。
3.2 误差定义
定义定位误差为ER,假设得到的未知节点的坐标为(xm,ym),其真实位置为(x,y),则定位误差ER为:

4 仿 真
利用Matlab仿真工具模拟三角形质心算法,考察该算法的性能。假设在100 m×100 m的正方形区域内,36个锚节点均匀分布,未知节点70个,分别用三边测量法和三角形质心定位算法进行仿真,仿真结果如图3所示。由图3可知,三角形质心算法比三边测量法,定位精度更高,当测距误差变大时,用三角形质心算法得出的平均定位误差比用三边测量法得出的小得多。

5 结 语
在此提出了将RSSI方法和三角形质心定位算法相结合的方法,通过仿真实验,将该算法和三边测量算法相比较,证明了该算法的优越性。下一步将研究在锚节点数量不同时的平均定位误差。

I. 无线传感器网络中的部署问题,200分!!追加!!

无线传感器网络是近几年发展起来的一种新兴技术,在条件恶劣和无人坚守的环境监测和事件跟踪中显示了很大的应用价值。节点部署是无线传感器网络工作的基础,对网络的运行情况和寿命有很大的影响。部署问题涉及覆盖、连接和节约能量消耗3个方面。该文重点讨论了网络部署中的覆盖问题,综述了现有的研究成果,总结了今后的热点研究方向,为以后的研究奠定了基础。
基于虚拟势场的有向传感器网络覆盖增强算法
摘 要: 首先从视频传感器节点方向性感知特性出发,设计了一种方向可调感知模型,并以此为基础对有向传感器网络覆盖增强问题进行分析与定义;其次,提出了一种基于虚拟势场的有向传感器网络覆盖增强算法PFCEA (potential field based coverage-enhancing algorithm).通过引入“质心”概念,将有向传感器网络覆盖增强问题转化为质心均匀分布问题,以质心点作圆周运动代替传感器节点传感方向的转动.质心在虚拟力作用下作扩散运动,以消除网络中感知重叠区和盲区,进而增强整个有向传感器网络覆盖.一系列仿真实验验证了该算法的有效性.
关键词: 有向传感器网络;有向感知模型;虚拟势场;覆盖增强
中图法分类号: TP393 文献标识码: A
覆盖作为传感器网络中的一个基本问题,反映了传感器网络所能提供的“感知”服务质量.优化传感器网络覆盖对于合理分配网络的空间资源,更好地完成环境感知、信息获取任务以及提高网络生存能力都具有重要的意义[1].目前,传感器网络的初期部署有两种策略:一种是大规模的随机部署;另一种是针对特定的用途进行计划部署.由于传感器网络通常工作在复杂的环境下,而且网络中传感器节点众多,因此大都采用随机部署方式.然而,这种大规模随机投放方式很难一次性地将数目众多的传感器节点放置在适合的位置,极容易造成传感器网络覆盖的不合理(比如,局部目标区域传感器节点分布过密或过疏),进而形成感知重叠区和盲区.因此,在传感器网络初始部署后,我们需要采用覆盖增强策略以获得理想的网络覆盖性能.
目前,国内外学者相继开展了相关覆盖增强问题的研究,并取得了一定的进展[25].从目前可获取的资料来看,绝大多数覆盖问题研究都是针对基于全向感知模型(omni-directional sensing model)的传感器网络展开的[6],
即网络中节点的感知范围是一个以节点为圆心、以其感知距离为半径的圆形区域.通常采用休眠冗余节点[2,7]、
重新调整节点分布[811]或添加新节点[11]等方法实现传感器网络覆盖增强.
实际上,有向感知模型(directional sensing model)也是传感器网络中的一种典型的感知模型[12],即节点的感知范围是一个以节点为圆心、半径为其感知距离的扇形区域.由基于有向感知模型的传感器节点所构成的网络称为有向传感器网络.视频传感器网络是有向传感器网络的一个典型实例.感知模型的差异造成了现有基于全向感知模型的覆盖研究成果不能直接应用于有向传感器网络,迫切需要设计出一系列新方法.
在早期的工作中[13],我们率先开展有向传感器网络中覆盖问题的研究,设计一种基本的有向感知模型,用以刻画视频传感器节点的方向性感知特性,并研究有向传感器网络覆盖完整性以及通信连通性问题.同时,考虑到有向传感器节点传感方向往往具有可调整特性(比如PTZ摄像头的推拉摇移功能),我们进一步提出一种基于图论和计算几何的集中式覆盖增强算法[14],调整方案一经确定,网络中所有有向传感器节点并发地进行传感方向的一次性调整,以此获得网络覆盖性能的增强.但由于未能充分考虑到有向传感器节点局部位置及传感方向信息,因而,该算法对有向传感器网络覆盖增强的能力相对有限.
本文将基本的有向感知模型扩展为方向可调感知模型,研究有向传感器网络覆盖增强问题.首先定义了方向可调感知模型,并分析随机部署策略对有向传感器网络覆盖率的影响.在此基础上,分析了有向传感器网络覆盖增强问题.本文通过引入“质心”概念,将待解决问题转化为质心均匀分布问题,提出了一种基于虚拟势场的有向传感器网络覆盖增强算法PFCEA(potential field based coverage-enhancing algorithm).质心在虚拟力作用下作扩散运动,逐步消除网络中感知重叠区和盲区,增强整个网络覆盖性能.最后,一系列仿真实验验证了PFCEA算法的有效性.
1 有向传感器网络覆盖增强问题
本节旨在分析和定义有向传感器网络覆盖增强问题.在此之前,我们对方向可调感知模型进行简要介绍.
1.1 方向可调感知模型
不同于目前已有的全向感知模型,方向可调感知模型的感知区域受“视角”的限制,并非一个完整的圆形区域.在某时刻t,有向传感器节点具有方向性感知特性;随着其传感方向的不断调整(即旋转),有向传感器节点有能力覆盖到其传感距离内的所有圆形区域.由此,通过简单的几何抽象,我们可以得到有向传感器节点的方向可调感知模型,如图1所示.
定义1. 方向可调感知模型可用一个四元组P,R, ,
表示.其中,P=(x,y)表示有向传感器节点的位置坐标;R表示节
点的最大传感范围,即传感半径;单位向量 = 为扇形感知区域的中轴线,即节点在某时刻t时的传感方向; 和 分别是单位向量 在X轴和Y轴方向上的投影分量;表示边界距离传感向量 的传感夹角,2代表传感区域视角,记作FOV.
特别地,当=时,传统的全向感知模型是方向可调感知模型的一个特例.
若点P1被有向传感器节点vi覆盖成立,记为viP1,当且仅当满足以下条件:
(1) ,其中, 代表点P1到该节点的欧氏距离;
(2) 与 间夹角取值属于[,].
判别点P1是否被有向传感器节点覆盖的一个简单方法是:如果 且 ,那么,点P1
被有向传感器节点覆盖;否则,覆盖不成立.另外,若区域A被有向传感节点覆盖,当且仅当区域A中任何一个点都被有向传感节点覆盖.除非特别说明,下文中出现的“节点”和“传感器节点”均满足上述方向可调感知模型.
1.2 有向传感器网络覆盖增强问题的分析与定义
在研究本文内容之前,我们需要作以下必要假设:
A1. 有向传感器网络中所有节点同构,即所有节点的传感半径(R)、传感夹角()参数规格分别相同;
A2. 有向传感器网络中所有节点一经部署,则位置固定不变,但其传感方向可调;
A3. 有向传感器网络中各节点都了解自身位置及传感方向信息,且各节点对自身传感方向可控.
假设目标区域的面积为S,随机部署的传感器节点位置满足均匀分布模型,且目标区域内任意两个传感器节点不在同一位置.传感器节点的传感方向在[0,2]上也满足均匀分布模型.在不考虑传感器节点可能落入边界区域造成有效覆盖区域减小的情况下,由于每个传感器节点所监控的区域面积为R2,则每个传感器节点能监测整个目标区域的概率为R2/S.目标区域被N个传感器节点覆盖的初始概率p0的计算公式为(具体推导过程参见文献[14])
(1)
由公式(1)可知,当目标区域内网络覆盖率至少达到p0时,需要部署的节点规模计算公式为
(2)
当网络覆盖率分别为p0和p0+p时,所需部署的传感器节点数目分别为ln(1p0)/,ln(1(p0+p))/.其中, =ln(SR2)lnS.因此,传感器节点数目差异N由公式(3)可得,
(3)
当目标区域面积S、节点传感半径R和传感夹角一定时,为一常数.此时,N与p0,p满足关系如图2所示(S=500500m2,R=60m,=45º).从图中我们可以看出,当p0一定时,N随着p的增加而增加;当p一定时,N随着p0的增加而增加,且增加率越来越大.因此,当需要将覆盖率增大p时,则需多部署N个节点(p0取值较大时(80%),p取值每增加1%,N就有数十、甚至数百的增加).如果采用一定的覆盖增强策略,无须多部署节点,就可以使网络覆盖率达到p0+p,大量节省了传感器网络部署成本.
设Si(t)表示节点vi在传感向量为 时所覆盖的区域面积.运算操作Si(t)Sj(t)代表节点vi和节点vj所能覆盖到的区域总面积.这样,当网络中节点传感向量取值为 时,有向传感器网络覆盖率可表
示如下:
(4)
因此,有向传感器网络覆盖增强问题归纳如下:
问题:求解一组 ,使得对于初始的 ,有 取值
接近最大.

Fig.2 The relation among p0, p and N
图2 p0,p和N三者之间的关系
2 基于虚拟势场的覆盖增强算法
2.1 传统虚拟势场方法
虚拟势场(virtual potential field)的概念最初应用于机器人的路径规划和障碍躲避.Howard等人[8]和Pori等人[9]先后将这一概念引入到传感器网络的覆盖增强问题中来.其基本思想是把网络中每个传感器节点看作一个虚拟的电荷,各节点受到其他节点的虚拟力作用,向目标区域中的其他区域扩散,最终达到平衡状态,即实现目标区域的充分覆盖状态.Zou等人[15]提出了一种虚拟力算法(virtual force algorithm,简称VFA),初始节点随机部署后自动完善网络覆盖性能,以均匀网络覆盖并保证网络覆盖范围最大化.在执行过程中,传感器节点并不移动,而是计算出随机部署的传感器节点虚拟移动轨迹.一旦传感器节点位置确定后,则对相应节点进行一次移动操作.Li等人[10]为解决传感器网络布局优化,在文献[15]的基础上提出了涉及目标的虚拟力算法(target involved virtual force algorithm,简称TIVFA),通过计算节点与目标、热点区域、障碍物和其他传感器之间的虚拟力,为各节点寻找受力平衡点,并将其作为该传感器节点的新位置.
上述利用虚拟势场方法优化传感器网络覆盖的研究成果都是基于全向感知模型展开的.假定传感器节点间存在两种虚拟力作用:一种是斥力,使传感器节点足够稀疏,避免节点过于密集而形成感知重叠区域;另一种是引力,使传感器节点保持一定的分布密度,避免节点过于分离而形成感知盲区[15].最终利用传感器节点的位置移动来实现传感器网络覆盖增强.
2.2 基于虚拟势场的有向传感器网络覆盖增强算法
在实际应用中,考虑到传感器网络部署成本,所有部署的传感器节点都具有移动能力是不现实的.另外,传感器节点位置的移动极易引起部分传感器节点的失效,进而造成整个传感器网络拓扑发生变化.这些无疑都会增加网络维护成本.因而,本文的研究工作基于传感器节点位置不变、传感方向可调的假设.上述假设使得直接利用虚拟势场方法解决有向传感器网络覆盖增强问题遇到了麻烦.在传统的虚拟势场方法中,传感器节点在势场力的作用下进行平动(如图3(a)所示),而基于本文的假设,传感器节点表现为其扇形感知区域在势场力的作用下以传感器节点为轴心进行旋转(如图3(b)所示).
为了简化扇形感知区域的转动模型,我们引入“质心(centroid)”的概念.质心是质点系中一个特定的点,它与物体的平衡、运动以及内力分布密切相关.传感器节点的位置不变,其传感方向的不断调整可近似地看作是扇形感知区域的质心点绕传感器节点作圆周运动.如图3(b)所示,一个均匀扇形感知区域的质心点位于其对称轴上且与圆心距离为2Rsin/3.每个传感器节点有且仅有一个质心点与其对应.我们用c表示传感器节点v所对应的质心点.本文将有向传感器网络覆盖增强问题转化为利用传统虚拟势场方法可解的质心点均匀分布问题,如图4所示.

Fig.3 Moving models of sensor node
图3 传感器节点的运动模型

Fig.4 The issue description of coverage enhancement in directional sensor networks
图4 有向传感器网络覆盖增强问题描述
2.2.1 受力分析
利用虚拟势场方法增强有向传感器网络覆盖,可以近似等价于质心点-质心点(c-c)之间虚拟力作用问题.我们假设质心点-质心点之间存在斥力,在斥力作用下,相邻质心点逐步扩散开来,在降低冗余覆盖的同时,逐渐实现整个监测区域的充分高效覆盖,最终增强有向传感器网络的覆盖性能.在虚拟势场作用下,质心点受来自相邻一个或多个质心点的斥力作用.下面给出质心点受力的计算方法.
如图5所示,dij表示传感器节点vi与vj之间的欧氏距离.只有当dij小于传感器节点传感半径(R)的2倍时,它们的感知区域才存在重叠的可能,故它们之间才存在产生斥力的作用,该斥力作用于传感器节点相应的质心点ci和cj上.
定义2. 有向传感器网络中,欧氏距离不大于节点传感半径(R)2倍的一对节点互为邻居节点.节点vi的邻居节点集合记作i.即i={vj|Dis(vi,vj)2R,ij}.
我们定义质心点vj对质心点vi的斥力模型 ,见公式(5).
(5)
其中,Dij表示质心点ci和cj之间的欧氏距离;kR表示斥力系数(常数,本文取kR=1);ij为单位向量,指示斥力方向(由质心点cj指向ci).公式(5)表明,只有当传感器节点vi和vj互为邻居节点时(即有可能形成冗余覆盖时),其相应的质心点ci和cj之间才存在斥力作用.质心点所受斥力大小与ci和cj之间的欧氏距离成反比,而质心点所受斥力方向由ci和cj之间的相互位置关系所决定.
质心点ci所受合力是其受到相邻k个质心点排斥力的矢量和.公式(6)描述质心点ci所受合力模型 .
(6)
通过如图6所示的实例,我们分析质心点的受力情况.图中包括4个传感器节点:v1,v2,v3和v4,其相应的质心
点分别为c1,c2,c3和c4.以质心点c1为例,由于d122R,故 ,质心点c1仅受到来自质心点c3和c4的斥力,其所受合力 .传感器节点传感方向旋转导致质心点的运动轨迹并不是任意的,而是固定绕传感器节点作圆周运动.因此,质心点的运动仅仅受合力沿圆周切线方向分量 的影响.

Fig.6 The force on centroid
图6 质心点受力
2.2.2 控制规则(control law)
本文基于一个虚拟物理世界研究质心点运动问题,其中作用力、质心点等都是虚拟的.该虚拟物理世界的构建是建立在求解问题特征的基础上的.在此,我们定义控制规则,即规定质心点受力与运动之间的关系,以达到质心点的均匀分布.
质心点在 作用下运动,受到运动学和动力学的双重约束,具体表现如下:
(1) 运动学约束
在传统传感器网络中利用虚拟势场方法移动传感器节点的情况下,由于传感器节点向任意方向运动的概率是等同的,我们大都忽略其所受的运动学约束[8].而在转动模型中,质心点的运动不是任意方向的,受合力沿圆
周切线方向分量 的影响,只能绕其传感器节点作圆周运动.
质心点在运动过程中受到的虚拟力是变化的,但对传感器网络系统来说,传感器节点之间每时每刻都交换邻居节点位置及传感方向信息是不现实的.因此,我们设定邻居节点间每隔时间步长t交换一次位置及传感方向信息,根据交换信息计算当前时间步长质心点所受合力,得出转动方向及弧长.同时,问题求解的目的在于将节点的传感方向调整至一个合适的位置.在此,我们不考虑速度和加速度与转动弧长之间的关系.
(2) 动力学约束
动力学约束研究受力与运动之间的关系.本运动模型中的动力学约束主要包含两方面内容:
• 每个时间步长t内,质心点所受合力与转动方向及弧长之间的关系;
• 质心点运动的静止条件.
在传统传感器网络中利用虚拟势场方法移动传感器节点的情况下,在每个时间步长内,传感器节点的运动速度受限于最大运动速度vmax,而不是随传感器节点受力无止境地增加.通过此举保证微调方法的快速收敛.在本转动模型中,我们同样假设质心点每次固定以较小的转动角度进行转动,通过多次微调方法逐步趋向最优解,即在每个时间步长t内,质心点转动的方向沿所受合力在圆周切线方向分量,转动大小不是任意的,而是具有固定转动角度.采用上述方法的原因有两个:
• 运动过程中,质心点受力不断变化,且变化规律很难用简单的函数进行表示,加之上述运动学约束和问题特征等因素影响,我们很难得出一个简明而合理的质心点所受合力与转动弧长之间的关系.
• 运动过程中,质心点按固定角度进行转动,有利于简化计算过程,减少节点的计算负担.同时,我们通过分析仿真实验数据发现,该方法具有较为理想的收敛性(具体讨论参见第3.2节).
固定转动角度取值不同对PFCEA算法性能具有较大的影响,这在第3.3节中将加以详细的分析和说明.
当质心点所受合力沿圆周切线方向分量为0时,其到达理想位置转动停止.如图7所示,我们假定质心点在圆周上O点处合力切向分量为0.由于质心点按固定转动角度进行转动,因此,它
未必会刚好转动到O点处.当质心点处于图7中弧 或 时,会
因合力切向分量不为0而导致质心点围绕O点附近往复振动.因此,为避免出现振动现象,加速质心点达到稳定状态,我们需要进一步限定质心点运动的停止条件.
当质心点围绕O点附近往复振动时,其受合力的切向分量很
小.因此,我们设定受力门限,当 (本文取=10e6),即可认
定质心点已达到稳定状态,无须再运动.经过数个时间步长t后,当网络中所有质心点达到稳定状态时,整个传感器网络即达到稳定状态,此时对应的一组 ,该
组解通常为本文覆盖增强的较优解.
2.3 算法描述
基于上述分析,本文提出了基于虚拟势场的网络覆盖增强算法(PFCEA),该算法是一个分布式算法,在每个传感器节点上并发执行.PFCEA算法描述如下:
输入:节点vi及其邻居节点的位置和传感方向信息.
输出:节点vi最终的传感方向信息 .
1. t0; //初始化时间步长计数器
2. 计算节点vi相应质心点ci初始位置 ;
3. 计算节点vi邻居节点集合i,M表示邻居节点集合中元素数目;
4. While (1)
4.1 tt+1;
4.2 ;
4.3 For (j=0; j<M; j++)
4.3.1 计算质心点cj对ci的当前斥力 ,其中,vji;
4.3.2 ;
4.4 计算质心点ci当前所受合力 沿圆周切线分量 ;
4.5 确定质心点ci运动方向;
4.6 If ( ) Then
4.6.1 质心点ci沿 方向转动固定角度;
4.6.2 调整质心点ci至新位置 ;
4.6.3 计算节点vj指向当前质心点ci向量并单位化,得到节点vi最终的传感方向信息 ;
4.7 Sleep (t);
5. End.
3 算法仿真与性能分析
我们利用VC6.0自行开发了适用于传感器网络部署及覆盖研究的仿真软件Senetest2.0,并利用该软件进行了大量仿真实验,以验证PFCEA算法的有效性.实验中参数的取值见表1.为简化实验,假设目标区域中所有传感器节点同构,即所有节点的传感半径及传感夹角规格分别相同.
Table 1 Experimental parameters
表1 实验参数
Parameter Variation
Target area S 500500m2
Area coverage p 0~1
Sensor number N 0~250
Sensing radius Rs 0~100m
Sensing offset angel  0º~90º
3.1 实例研究
在本节中,我们通过一个具体实例说明PFCEA算法对有向传感器网络覆盖增强.在500500m2的目标区域内,我们部署传感半径R=60m、传感夹角=45º的传感器节点完成场景监测.若达到预期的网络覆盖率p=70%, 通过公式(1),我们可预先估算出所需部署的传感器节点数目,
.
针对上述实例,我们记录了PFCEA算法运行不同时间步长时有向传感器网络覆盖增强情况,如图8所示.

(a) Initial coverage, p0=65.74%
(a) 初始覆盖,p0=65.74% (b) The 10th time step, p10=76.03%
(b) 第10个时间步长,p10=76.03%

(c) The 20th time step, p20=80.20%
(c) 第20个时间步长,p20=80.20% (d) The 30th time step, p30=81.45%
(d) 第30个时间步长,p30=81.45%
Fig.8 Coverage enhancement using PFCEA algorithm
图8 PFCEA算法实现覆盖增强
直观看来,质心点在虚拟斥力作用下进行扩散运动,逐步消除网络中感知重叠区和盲区,最终实现有向传感器网络覆盖增强.此例中,网络传感器节点分别经过30个时间步长的调整,网络覆盖率由最初的65.74%提高到81.45%,网络覆盖增强达15.71个百分点.
图9显示了逐个时间步长调整所带来的网络覆盖增强.我们发现,随着时间步长的增加,网络覆盖率也不断增加,且近似满足指数关系.当时间步长达到30次以后,网络中绝大多数节点的传感方向出现振动现象,直观表现为网络覆盖率在81.20%附近在允许的范围振荡.此时,我们认定有向传感器网络覆盖性能近似增强至最优.
网络覆盖性能可以显着地降低网络部署成本.实例通过节点传感方向的自调整,在仅仅部署105个传感器节点的情况下,最终获得81.45%的网络覆盖率.若预期的网络覆盖率为81.45%,通过公式(1)的计算可知,我们至少需要部署148个传感器节点.由此可见,利用PFCEA算法实现网络覆盖增强的直接效果是可以节省近43个传感器节点,极大地降低了网络部署成本.
3.2 收敛性分析
为了讨论本文算法的收敛性,我们针对4种不同的网络节点规模进行多组实验.我们针对各网络节点规模随机生成10个拓扑结构,分别计算算法收敛次数,并取平均值,实验数据见表2.其他实验参数为R=60m,=45º, =5º.
Table 2 Experimental data for convergence analysis
表2 实验数据收敛性分析

(%)
(%)

1 50 41.28 52.73 24
2 70 52.74 64.98 21
3 90 60.76 73.24 28
4 110 65.58 78.02 27
分析上述实验数据,我们可以得出,PFCEA算法的收敛性即调整的次数,并不随传感器网络节点规模的变化而发生显着的改变,其取值一般维持在[20,30]范围内.由此可见,本文PFCEA算法具有较好的收敛性,可以在较短的时间步长内完成有向传感器网络的覆盖增强过程.
3.3 仿真分析
在本节中,我们通过一系列仿真实验来说明4个主要参数对本文PFCEA算法性能的影响.它们分别是:节点规模N、传感半径R、传感夹角和(质心点)转动角度.针对前3个参数,我们与以往研究的一种集中式覆盖增强算法[14]进行性能分析和比较.
A. 节点规模N、传感半径R以及传感角度
我们分别取不同节点规模进行仿真实验.从图10(a)变化曲线可以看出,当R和一定时,N取值较小导致网络初始覆盖率较小.此时,随着N的增大,p取值呈现持续上升趋势.当N=200时,网络覆盖率增强可达14.40个百分点.此后,p取值有所下降.这是由于当节点规模N增加导致网络初始覆盖率较高时(如60%),相邻多传感器节点间形成覆盖盲区的概率大为降低,无疑削弱了PFCEA算法的性能.另外,部分传感器节点落入边界区域,也会间接起到削弱PFCEA算法性能的作用.
另外,传感半径、传感角度对PFCEA算法性能的影响与此类似.当节点规模一定时,节点传感半径或传感角度取值越小,单个节点的覆盖区域越小,各相邻节点间形成感知重叠区域的可能性也就越小.此时,PFCEA算法对网络覆盖性能改善并不显着.随着传感半径或传感角度的增加,p不断增加.当R=70m且=45º时,网络覆盖率最高可提升15.91%.但随着传感半径或传感角度取值的不断增加,PFCEA算法带来的网络覆盖效果降低,如图10(b)、图10(c)所示.

(c) The effect of sensing offset angle , other parameters meet N=100, R=40m, =5º
(c) 传感角度的影响,其他实验参数满足:N=100,R=40m,=5º

J. 无线传感网多跳路由节点能耗怎么计算

(1)根据无线传感器网络中因节点有效传输半径对路由选择的制约,改进基于最小生成树的分簇多跳路由算法,改善因路由选择对网络能耗的影响。该算法利用Voronoi图的泊松过程特性优化簇首节点数,并结合最小生成树动态调整簇内外节点的路由发现实现网络能耗优化。仿真结果表明该算法在开销容忍的前提下,网络均衡负载,并与相同仿真条件下的基于LEACH的分层多跳路由算法相比,更有效地延长了网络寿命,同时降低了计算时间复杂度。
(2)针对无线传感器网络中传感器节点投放分布对投放区域有效通信信号覆盖的影响,改进了一种基于通信覆盖的分布式投放概率覆盖算法。在保证投放精度的前提下,该算法根据传感器节点在投放区域中位置的不确定性以及信号衰减特性,建立信号覆盖模型,并通过信号覆盖率计算出各节点预定投放位置,由传感器节点的自定位算法获取定位信息为前提,获取节点的投放位置和投放数目。在改善区域通信覆盖的同时,提高了节点分布效率,达到节省网络资源的目的。通过仿真比较了在不同定位投放方法下的各相关性数据,验证了该算法可实现高效投放的优越性能。
(3)在关于无线传感器网络应用方面,提出了在实现投放区域有效通信信号覆盖的基础上保证局部能量有效损耗的路由设计要求,由此提出了基于多跳路径划分子空间的分簇路由算法。该路由算法在获得相应的节点拓扑分布的前提下实现了能量平均损耗,而节点拓扑的获取则通过采用高斯分布的定位误差模型与马尔可夫链性质相结合,改进了以前算法对于传感器节点拓扑结构的获取。通过对整个算法的仿真,得到的相关数据证明了算法在实现网络硬件资源优化和能量有效损耗方面所具有的较好的性能。
(4)在对运动目标跟踪定位的研究中,对于无法得知目标的运动状态方程和观测噪声的概率密度分布的情况时,提出基于粒子滤波和曲线准线性优化的目标跟踪算法。算法利用传感器节点的感知圆的几何特性确定目标的运动区域的边界限制,借鉴cost
reference粒子滤波算法,估计出目标的运动轨迹,随后通过曲线的线性近似简化了目标运动轨迹的估计,同时也获取了目标的速率的可控估计,仿真结果证明了所提算法的高效性。根据实际应用中可能出现部分的传感器节点失效的情况,引入了节点的失效检测,并以贝叶斯概率分布估计纠正失效节点对原目标状态做的判断,提高失效节点所在感知区域的容错能力,改善了目标跟踪定位的精度。

阅读全文

与无线传感器网络质心算法例题相关的资料

热点内容
网络共享中心没有网卡 浏览:521
电脑无法检测到网络代理 浏览:1374
笔记本电脑一天会用多少流量 浏览:576
苹果电脑整机转移新机 浏览:1376
突然无法连接工作网络 浏览:1059
联通网络怎么设置才好 浏览:1224
小区网络电脑怎么连接路由器 浏览:1034
p1108打印机网络共享 浏览:1212
怎么调节台式电脑护眼 浏览:695
深圳天虹苹果电脑 浏览:932
网络总是异常断开 浏览:612
中级配置台式电脑 浏览:991
中国网络安全的战士 浏览:630
同志网站在哪里 浏览:1413
版观看完整完结免费手机在线 浏览:1459
怎样切换默认数据网络设置 浏览:1110
肯德基无线网无法访问网络 浏览:1286
光纤猫怎么连接不上网络 浏览:1474
神武3手游网络连接 浏览:965
局网打印机网络共享 浏览:1000