A. 无线传感器网络MAC协议有哪些基本分类
没有统一的MAC协议分类方式,但是大体依据标准分为三种,如根据网络拓扑结构方式(分布式和集中式控制);使用单一或多信道方式;采用固定分配信道还是随机访问信道方式。
已有的参考文献也将无线传感器网络MAC协议分为三类:确定性分配、竞争占用和随机访问。前两者不是传感器网络的理想选择。因为TDMA固定时隙的发送模式功耗过大,为了节省功耗,空闲状态应关闭发射机。竞争占用方案需要实时监测信道状态也不是一种合理的选择。随机介质访问模式比较适合于无线传感网络的节能要求。
下面介绍根据信道分配使用方式,将无线传感器网络MAC协议分为基于无线信道随机竞争方式和时分复用方式及基于时分和频分复用等其他混合方式三种。
1) 无线信道随机竞争接入方式(CSMA)
节点需要发送数据时采用随机方式使用无线信道,典型的如采用载波监听多路访问(CSMA)的MAC协议,需要注意隐藏终端和暴露终端问题,尽量减少节点间的干扰。
2) 无线信道时分复用无竞争接入方式(TDMA)
采用时分复用(TDMA)方式给每个节点分配了一个固定的无线信道使用时段,可以有效避免节点间的干扰。
3) 无线信道时分/频分/码分等混合复用接入方式(TDMA/FDMA/CDMA)
通过混合采用时分和频分或码分等复用方式,实现节点间的无冲突信道分配策略。
B. 无线传感器网络的特点及关键技术
无线传感器网络的特点及关键技术
无线传感器网络被普遍认为是二十一世纪最重要的技术之一,是目前计算机网络、无线通信和微电子技术等领域的研究热点。下面我为大家搜索整理了关于无线传感器网络的特点及关键技术,欢迎参考阅读!
一、无线传感器网络的特点
与其他类型的无线网络相比,传感器网络有着鲜明的特征。其主要特点可以归纳如下:
(一)传感器节点能量有限。当前传感器通常由内置的电池提供能量,由于体积受限,因而其携带的能量非常有限。如何使传感器节点有限的能量得到高效的利用,延长网络生存周期,这是传感器网络面临的首要挑战。
(二)通信能力有限。无线通信消耗的能量与通信距离的关系为E=kdn。其中,参数n的取值为2≤n≤4,n的取值与许多因素有关。但是不管n具体的取值,n的取值范围一旦确定,就表明,无线通信的能耗是随着距离的增加而更加急剧地增加的。因此,在满足网络连通性的要求下,应尽量采用多跳通信,减少单跳通信的距离。通常,传感器节点的通信范围在100m内。
(三)计算、存储和有限。一方面为了满足部署的要求,传感器节点往往体积小;另一方面出于成本控制的目的`,节点的价格低廉。这些因素限制了节点的硬件资源,从而影响到它的计算、存储和通信能力。
(四)节点数量多,密度高,覆盖面积广。为了能够全面准确的监测目标,往往会将成千上万的传感器节点部署在地理面积很大的区域内,而且节点密度会比较大,甚至在一些小范围内采用密集部署的方式。这样的部署方式,可以让网络获得全面的数据,提高信息的可靠性和准确性。
(五)自组织。传感器网络部署的区域往往没有基础设施,需要依靠传感器节点协同工作,以自组织的方式进行网络的配置和管理。
(六)拓扑结构动态变化。传感器网络的拓扑结构通常是动态变化的,例如部分节点故障或电量耗尽退出网络,有新的节点被部署并加入网络,为节约能量节点在工作和休眠状态间进行切换,周围环境的改变造成了无线通信链路的变化,以及传感器节点的移动等都会导致传感器网络拓扑结构发生变化。
(七)感知数据量巨大。传感器网络节点部署范围大、数量多,且网络中的每个传感器通常都产生较大的流式数据并具有实时性,因此网络中往往存在数量巨大的实时数据流。受传感器节点计算、存储和带宽等资源的限制,需要有效的分布式数据流管理、查询、分析和挖掘方法来对这些数据流进行处理。
(八)以数据为中心。对于传感器网络的用户而言,他们感兴趣的是获取关于特定监测目标的真实可靠的数据。在使用传感器网络时,用户直接使用其关注的事件作为任务提交给网络,而不是去访问具有某个或某些地址标识的节点。传感器网络中的查询、感知、传输都是以数据为中心展开的。
(九)传感器节点容易失效。由于传感器网络应用环境的特殊性以及能量等资源受限的原因,传感器节点失效(如电池能量耗尽等)的概率远大于传统无线网络节点。因此,需要研究如何提高数据的生存能力、增强网络的健壮性和容错性以保证部分传感器节点的损坏不会影响到全局任务的完成。此外,对于部署在事故和自然灾害易发区域的无线传感器网络,还需要进一步研究当事故和灾害导致大部分传感器节点失效时如何最大限度地将网络中的数据保存下来,以提供给灾害救援和事故原因分析等使用。
二、关键技术
无线传感器网络作为当今信息领域的研究热点,设计多学科交叉的研究领域,有非常多的关键技术有待研究和发现,下面列举若干。
(一)网络拓扑控制。通过拓扑控制自动生成良好的拓扑结构,能够提高路由协议和MAC协议的效率,可为数据融合、时间同步和目标定位等多方面奠定基础,有利于节省能量,延长网络生存周期。所以拓扑控制是无线传感器网络研究的核心技术之一。目前,拓扑控制主要研究的问题是在满足网络连通度的前提下,通过功率控制或骨干网节点的选择,剔除节点之间不必要的通信链路,生成一个高效的数据转发网络拓扑结构。
(二)介质访问控制(MAC)协议。在无线传感器网络中,MAC协议决定无线信道的使用方式,在传感器节点之间分配有限的无线通信资源,用来构建传感器网络系统的底层基础结构。MAC协议处于传感器网络协议的底层部分,对传感器网络的性能有较大影响,是保证无线传感器网络高效通信的关键网络协议之一。传感器网络的强大功能是由众多节点协作实现的。多点通信在局部范围需要MAC协议协调其间的无线信道分配,在整个网络范围内需要路由协议选择通信路径。
在设计MAC协议时,需要着重考虑以下几个方面:
(1)节省能量。传感器网络的节点一般是以干电池、纽扣电池等提供能量,能量有限。
(2)可扩展性。无线传感器网络的拓扑结构具有动态性。所以MAC协议也应具有可扩展性,以适应这种动态变化的拓扑结构。
(3)网络效率。网络效率包括网络的公平性、实时性、网络吞吐量以及带宽利用率等。
(三)路由协议。传感器网络路由协议的主要任务是在传感器节点和Sink节点之间建立路由以可靠地传递数据。由于传感器网络与具体应用之间存在较高的相关性,要设计一种通用的、能满足各种应用需求的路由协议是困难的,因而人们研究并提出了许多路由方案。
(四)定位技术。位置信息是传感器节点采集数据中不可或缺的一部分,没有位置信息的监测消息可能毫无意义。节点定位是确定传感器的每个节点的相对位置或绝对位置。节点定位分为集中定位方式和分布定位方式。定位机制也必须要满足自组织性,鲁棒性,能量高效和分布式计算等要求。
(五)数据融合。传感器网络为了有效的节省能量,可以在传感器节点收集数据的过程中,利用本地计算和存储能力将数据进行融合,取出冗余信息,从而达到节省能量的目的。
(六)安全技术。安全问题是无线传感器网络的重要问题。由于采用的是无线传输信道,网络存在偷听、恶意路由、消息篡改等安全问题。同时,网络的有限能量和有限处理、存储能力两个特点使安全问题的解决更加复杂化了。
;C. 高分悬赏无线传感器网络混合类斑马协议(Z-MAC)
3.3 常见的MAC协议分析与比较
3.3.1 S-MAC协议
S-MAC(Sensor-MAC)协议是较早的针对WSN的一种MAC协议,他是在802.11MAC的基础上,采用下面介绍的多种机制来减少了节点能量的消耗。固定周期性的侦听和睡眠:为了减少能量的消耗,传感器节点要尽量处于低功耗的睡眠状态。S-MAC协议采用了低占空比的周期性睡眠/侦听。为了使得S-MAC协议具有良好的扩展性,在覆盖网络中形成众多不同的虚拟簇。
消息传递技术:对于无线信道,传输差错与包长度成正比,短包成功传输的概率要大于长包。在S-MAC协议中消息传递技术将长消息分成若干短包,利用RTS/CTS握手机制,一次性发送整个长消息,这样既提高发送成功率,有减少了控制消息。流量自适应侦听机制:传感器节点在与邻居节点通信结束后并不立即进入睡眠状态,而保持侦听一段时间,采用流量自适应侦听机制,减少了网络中的传输延迟。
S-MAC协议与IEEE802.11 MAC相比,在节能方面有了很大的改善。但睡眠机制的引入,使得网络的传输延迟增加,吞吐量下降。针对S-MAC协议存在的不足,研究人员对其进行了改进,提出了一种带有自适应睡眠的S-MAC协议。
3.3.2 LMAC协议
LMAC协议使用时分多址 (TDMA)机制,时间被分成若干个时隙, 节点在传送数据时不需要竞争信道,可以避免传输碰撞造成的能量损耗。节点只能指派一个控制时隙,在时隙期间,节点总是会传送一条信息,此信息包含两部分:控制信息和数据单元。由于一个时隙只能被一个节点控制, 所以节点可以无冲突的进行通讯【1】。
3.3.3 T-MAC协议
T-MAC(Timeout-MAC)协议与自适应睡眠的S-MAC协议基本思想大体相同。数据传输仍然采用RTS/CTS/DATA/ACK的4次握手机制,不同的是在节点活动的时隙内插入了一个TA(Time Active)时隙,若TA时隙之间没有任何时间发生,则活动结束进入睡眠状态。TA的取值对于T-MAC协议性能至关重要,其约束条件为:TA=m(C+R+T),m>1,其中C为竞争信道时间,R为发送RTS分组的时间,T为RTS分组结束到发出CTS分组开始的时间。在仿真的时候,一般选取m=1.5,即:TA=1.5×(C+R+T)。
T-MAC协议虽然能根据当前网络的动态变化,通过提前结束活动周期来减少空闲侦听提高能效,但带来了“早睡”问题。所谓早睡问题是指在多个传感器节点向一个或少数几个汇聚节点发送数据时,由于节点在当前TA没有收到激活事件,过早进入睡眠,没有监测到接下来的数据包,导致网络延迟。为解决这个问题,提出了未来清除发送和满缓冲区优先两个方法。
基于竞争的MAC协议通常很难提供实时性保证,而且由于冲突的存在,浪费了能量。基于竞争的协议在有些应用场合(比如主要考虑节能而不太关心时延的可预测性时)有较大的应用,基于竞争的协议需要解决的是提供一个实时性的统计上界。根据这类协议的分布式和随机的补偿特性,基于竞争的协议没有确切的保证不同节点的数据包的优先级。因此,有必要限制优先级倒置的概率以建立统计上的端到端的时延保证。
3.3.4 Wise-MAC协议
Wise - MAC协议在非坚持CSMA协议的基础上,采用前导码采样技术控制节点处于空闲侦听状态时的能量消耗。与S-MAC和T-MAC协议相比,节能效果非常显着。
无线信道在传输过程中经常出现错误,所以需要链路层的确认机制来恢复丢失的数据包。Wise-MAC协议的ACK数据帧不仅用来对接收到的数据包进行确认,还会通知其他邻居节点到下一次采样的剩余时间。通过这种方式,每个节点不断更新相邻节点的采样时间偏移表。利用这些信息,每个节点可以选择恰当的时间,使用最小长度的唤醒前导码向目的节点发送数据。
Wise-MAC协议可以很好地适应网络流量变化,他是和WISENET超级功耗SoC芯片结合设计的。Wise-MAC协议的采样同步机制会带来数据包冲突的问题,也会由于节点学要存储相邻节点的信道侦听时间,会占用宝贵的存储空间,增加协议实现的复杂度,尤其是在节点密度较高的网络内这个问题尤为突出。
3.3.5 DMAC协议
数据采集树是无线传感器网络的一种重要的通信模式,DMAC协议就是针对这种数据采集树而提出的,目标是减少网络的能量消耗和减少数据的传输延迟。DMAC协议采用不同深度节点之间的接收发送/睡眠的交错调度机制。将节点周期划分为接收、发送和睡眠时隙,数据能沿着多跳路径连续地从数据源节点传送到汇聚节点,减少睡眠带来的传输延迟。
3.3.6 Z-MAC协议
综合CSMA和TDMA二者各自的优点,由RHEE 等在2005年提出了一种混合机制的Z-MAC协议。
Z-MAC将信道使用物化为时间帧的同时,使用CSMA作为基本机制,时隙的占有者只是有数据发送的优先权,其他节点也可以在该时隙发送信息帧,当节点之间产生碰撞之后,时隙占有者的回退时间短,从而真正获得时隙的信道使用权。Z-MAC使用竞争状态标示来转换MAC机制,节点在ACK重复丢失和碰撞回退频繁的情况下,将由低竞争状态转为高竞争状态,由CSMA机制转为TDMA机制。因而可以说,Z-MAC在较低网络负载下,类似CSMA,在网络进入高竞争的信道状态之后,类似TDMA。
Z-MAC并不需要精确的时间同步,有着较好的信道利用率和网络扩展性。协议达到即时的适应网络负载的变化的同时,TDMA和CSMA机制的同步和互换会产生较大的能量耗损和网络延迟问题。
D. 无线网络优化研究参考文献有哪些
参考文献】
1
肖克江;熊忠阳;张玉芳;;多径路由协议AOMDV的改进与性能分析[J];计算机工程与应用;2012年06期
2
田克;张宝贤;马建;姚郑;;无线多跳网络中的机会路由[J];软件学报;2010年10期
【共引文献】
1
陈伟;魏强;赵玉婷;;传输速率感知的机会路由候选路由节点选择和排序[J];计算机应用;2011年11期
2
王英;黄群;李云;曹傧;;一种新的协作的路由协议:C-DSR[J];计算机应用研究;2013年07期
3
蔡顺;张三峰;董永强;吴国新;;面向编码机会路由的无线Mesh网络广播信道接入[J];软件学报;2012年09期
4
李彬;王文杰;殷勤业;杨荣;杨小勇;王慧明;;无线传感器网络节点协作的节能路由传输[J];西安交通大学学报;2012年06期
5
刘琰;;基于网络编码的流量感知路由协议研究设计[J];延安大学学报(自然科学版);2013年01期
E. 无线传感网mac层的主要功能是什么
MAC,顾名思义,就是介质访问控制,是用来控制无线介质的访问的,由于无线传输是共享空中资源的,必然存在多个无线传感器节点对传输介质的争用,MAC层协议就是用来解决这个问题的,包括冲突的检测与处理、信道与通信资源的分配,等等
F. 物联网工程概论的目录
前言
第1章绪论
1.1定义
1.2发展概况
1.3框架结构
1.4标准体系
1.5关键技术和难点
1.6应用领域
本章小结
习题与思考题
参考文献
第2章EPC和RFID技术
2.1EPC编码
2.1.1EPC编码协议
2.1.2EPC系统结构
2.1.3条形码技术
2.1.4条形码、RFID和EPC的区别
2.2RFID系统
2.2.1应答器原理
2.2.2阅读器部分
2.2.3RFID天线部分
2.2.4RFID中间件
本章小结
习题与思考题
参考文献
第3章传感器技术
3.1传感器基础知识
3.1.1传感器的概念
3.1.2传感器的作用
3.1.3传感器的组成
3.1.4传感器的分类
3.1.5传感器的基本特性
3.2几种常用传感器介绍
3.2.1温度传感器
3.2.2湿度传感器
3.2.3超声波传感器
3.2.4气敏传感器
3.3智能传感器
3.3.1智能传感器的基本概念
3.3.2智能传感器的组成
3.3.3智能传感器的功能与特点
3.3.4基于IEEE1451的网络化智能传感器
3.3.5智能传感器标准体系
3.3.6智能传感器的应用
3.3.7智能传感器发展趋势
3.4MEMS技术
3.4.1MEMS概述
3.4.2MEMS特点
3.4.3MEMS应用
3.4.4常用的MEMS传感器
3.5传感器接口技术
3.5.1传感器接口特点
3.5.2常用传感器接口电路
3.5.3传感器与微机接口的一般结构
3.5.4接口电路应用实例
本章小结
习题与思考题
参考文献
第4章无线传感器网络技术
4.1无线传感器网络概述
4.1.1无线传感器网络介绍
4.1.2传感器网络体系结构
4.1.3传感器网络的发展
4.2无线传感器网络的技术体系
4.2.1自组网技术
4.2.2节点定位技术
4.2.3时间同步技术
4.2.4安全技术
4.3无线传感器网络的通信协议
4.3.1无线传感器网络的路由协议
4.3.2无线传感器网络的MAC协议
4.4无线传感器网络的技术标准
4.4.1IEEE802.15.4标准
4.4.2ZigBee协议规范
4.5多传感器网络的信息融合
4.5.1无线传感器网络数据融合
4.5.2无线传感器网络数据融合分类
模型
本章小结
习题与思考题
参考文献
第5章M2M技术
5.1概述
5.1.1M2M起源及现状
5.1.2M2M标准化工作
5.2M2M的体系结构、协议、内容
5.2.1M2M系统架构
5.2.2M2M关键技术
5.2.3M2M应用模式
5.2.4WMMP介绍
5.3M2M模块
5.3.1几种M2M模块介绍
5.3.2华为的M2M模块——MC323
5.4M2M应用
5.4.1医疗保健
5.4.2电力系统
5.4.3智能家居
5.5M2M的前景和挑战
5.5.1M2M市场的前景预测
5.5.2当前M2M应用模式所存在的问题
本章小结
习题与思考题
参考文献
第6章云计算技术
6.1云计算简介
6.1.1云计算的起源
6.1.2云计算的基本概念
6.1.3云计算的特点
6.1.4云计算与相关技术的关系
6.2云计算与物联网
6.3云计算实现技术
6.3.1云计算工作原理
6.3.2云计算体系结构
6.3.3云计算服务层次
6.3.4云计算关键技术
6.3.5云计算的派生技术
本章小结
习题与思考题
参考文献
第7章智能处理技术
7.1开放复杂智能系统
7.2知识的获取、表达与推理
7.2.1知识概述
7.2.2信息与知识获取
7.2.3知识表示
7.2.4知识推理
7.2.5知识与智能涌现
7.3数据库技术
7.3.1数据库概述
7.3.2数据模型
7.3.3分布式数据库
7.3.4移动数据库
7.3.5数据仓库、数据挖掘与知识发现
7.3.6常见数据库产品
7.4分布智能
7.4.1分布智能概述
7.4.2智能Agent
7.4.3多智能Agent
7.4.4移动Agent
本章小结
习题与思考题
参考文献
第8章物联网安全技术
8.1物联网安全性概述
8.1.1物联网的安全技术分析
8.1.2RFID标签安全性概述
8.2物联网身份识别技术
8.2.1电子ID身份识别技术
8.2.2个人特征的身份证明
8.3基于零知识证明的识别技术
8.4物联网密钥管理技术
8.4.1对称密钥的管理
8.4.2非对称密钥的管理
8.5物联网密钥管理系统
8.5.1密钥的分配
8.5.2物联网密钥分配方法
8.5.3密钥注入
8.5.4密钥存储
8.5.5密钥更换和密钥吊销
8.6物联网密钥产生技术
8.6.1密钥产生的硬件技术
8.6.2密钥产生的软件技术
8.7密钥的分散管理与托管
8.8物联网中的消息鉴别和数字签名
8.8.1消息一致性
8.8.2数字签名
8.8.3数字签名的应用例子
8.9信息隐藏概述
8.10信息隐藏基本原理
8.11数字水印
8.12物联网IP安全
8.13密钥交换(IKE)协议
本章小结
习题与思考题
参考文献
第9章物联网的理论基础
9.1物联网下的控制理论基础
9.1.1经典控制理论
9.1.2现代控制理论
9.1.3几种常见的控制方式
9.1.4基于网络的控制理论基础
9.2信息论基础
9.2.1信息论分类及发展
9.2.2信息论基础
9.2.3物联网语境下的信息论——感知信息论
9.3网络科学基础
9.3.1研究网络科学的三个阶段
9.3.2研究网络科学的工具和方法
9.3.3无尺度网络和Barabasi?Albert模型
9.4CPS理论基础
9.4.1CPS—物联网的技术内涵
9.4.2CPS的体系结构
9.4.3CPS发展的科学技术瓶颈分析
9.5物联网关键的科学问题
9.6物联网建模探究
本章小结
习题与思考题
参考文献
缩略语
G. 无线传感器网络数据链路层的研究
数据链路层:就是利用物理层提供的数据传输功能,将物理层的物理连接链路转换成逻辑连接链路,从而形成一条没有差错的链路,保证链路的可靠性。
数据链路层也向它的上层——网络层提供透明的数据传送服务,主要负责数据流多路复用、数据帧监测、媒体介入和差错控制,保证无线传感器网络内点到点以及点到多点的连接。
无线传感器网络的数据链路层研究的主要内容就是MAC和差错控制。
怎样实现无线传感器网络中无线信道的共享,即介质控制协议(MAC)的实现是无线传感器网络数据链路层研究的一个重点,MAC协议的好坏直接影响网络的性能优劣。
H. 竞争型,分配型和混合型mac协议各有什么特点
基于竞争的MAC协议有以下优点:可根据需要分配信道,所以这种协议能较好的满足节点数量和网络负载的变化。能较好的适应网络拓扑的变化。不需要复杂的时间同步或控制调度算法。分配式的无线传感器网络MAC协议有如下优点:无冲突。无隐蔽终端问题。易于休眠,适合于低功耗网络。