导航:首页 > 无线网络 > 无线传感器网络判断

无线传感器网络判断

发布时间:2023-01-28 22:01:19

① 什么是无线传感技术

早在上世纪70年代,就出现了将传统传感器采用点对点传输、连接传感控制器而构成传感网络雏形,我们把它归之为第一代传感器网络。随着相关学科的不断发展和进步,传感器网络同时还具有了获取多种信息信号的综合处理能力,并通过与传感控制的相联,组成了有信息综合和处理能力的传感器网络,这是第二代传感器网络。而从上世纪末开始,现场总线技术开始应用于传感器网络,人们用其组建智能化传感器网络,大量多功能传感器被运用,并使用无线技术连接,无线传感器网络逐渐形成。

无线传感器网络是新一代的传感器网络,具有非常上世纪70年代,其发展和应用,将会给人类的生活和生产的各个领域带来深远影响。

无线传感器网络可以看成是由数据获取网络、数据颁布网络和控制管理中心三部分组成的。其主要组成部分是集成有传感器、处理单元和通信模块的节点,各节点通过协议自组成一个分布式网络,再将采集来的数据通过优化后经无线电波传输给信息处理中心。

② 网络故障的诊断技术

网络故障的诊断技术

计算机网络的广泛应用为人们带来了诸多的便利,但随之而来的网络故障也带来了很多烦恼,有时甚至会带来巨大的经济损失。下面我为大家搜索整理了关于网络故障的诊断技术,欢迎参考阅读,希望对大家有所帮助!想了解更多相关信息请持续关注我们应届毕业生培训网!

随着现代科学技术的发展,设备的集成度越来越高,越来越复杂,承载信息的网络已经成为人们生活不可或缺的一部分。但网络运行中经常会发生一些硬件故障,这些故障的产生使日常工作不能正常进行,诊断并排除网络故障就成为网络管理的一项重要工作。要做到及时发现网络故障、准确定位故障并排除故障,必须要掌握大量专业知识并具备丰富的经验。

一、研究背景

在过去的几十年间,计算机网络的规模经历了爆炸式的增长。网络的应用已经深入到人们生活、工作的每一个角落,成为必不可少的基础设施。随着对网络依赖性的加强,人们对网络的可靠性也提出了更高的要求:①有稳定、高效、安全的网络环境:②当网络发生故障时,能够及时的检测出故障原因并修复。可以看出,网络故障诊断对保持网络的健康状态具有重要的意义.然而在当今网络环境下,网络故障诊断遇到了前所未有的困难,其主要表现在以下几个方面;

1.计算机网络无论从规模上,还是从网络复杂性和业务多样性上都有了巨大的发展。大规模网络的故障关系错综复杂,故障原因和故障现象之间的对应关系模糊,大大提高了故障诊断的难度;

2.网络设备的复杂性也提高了故障诊断的难度。网络设备的复杂性有两个含义:第一是新的网络设备不断推出,功能越来越多,越来越复杂;第二是设备提供商数量众多,产品规格和标准不统一;

二、网络体系结构

网络体系结构中涉及到了:协议、实体、接口

计算机网络中实现通信就必须依靠网络通过协议。在20世纪70年代,各大计算机生产商的产品都拥有自己的网络通信协议。但是不同的厂家生产的计算机系统就难以连接,为了实现不同厂商生产的计算机系统之间以及不同网络之间的数据通信,国际标准化组织ISO(开放系统互连参考模型)即OSI/RM也称为ISO/OSI,该系统称为开放系统。

物理层是OSI/RM的最低层,物理层包括:1.通信接口与传输媒体的物理特性;2.物理层的数据交换单元为二进制比特;3.比特的同步;4.线路的连接;5.物理拓扑结构;6.传输方法。

数据链路层是OSI/RM的第2层它包括:成帧、物理地址寻址、流量控制、差错控制、接口控制。

网络层是计算机通信子网的最高层,有:逻辑地址寻址、路由功能、流量控制、拥塞控制。

其它层次:传输层、会话层、表示层和应用层。

计算机也拥有TCP/IP的体系结构即传输控制协议/网际协议。TCP/IP包括TCP/IP的层次结构和协议集。

三、网络故障诊断原理

网络故障极为普遍,故障种类也十分繁杂。如果把网络故障的常见故障进行归类查找,无疑能够迅速而准确地查找故障根源,解决网络故障。一般可以分为物理类故障和逻辑类故障两大类。

物理故障,一般是指线路或设备出现物理类问题或说成硬件类问题。

1.线路故障

在日常网络维护中,线路故障的发生率是相当高的,约占发生故障的70%。线路故障通常包括线路损坏及线路受到严重电磁干扰。

2.端口故障

端口故障通常包括插头松动和端口本身的物理故障。

3.集线器或路由器故障

集线器或路由器故障在此是指物理损坏,无法工作,导致网络不通。

4.主机物理故障

网卡故障,笔者把其也归为主机物理故障,因为网卡多装在主机内,靠主机完成配置和通信,即可以看作网络终端。此类故障通常包括网卡松动,网卡物理故障,主机的网卡插槽故障和主机本身故障。

主机资源被盗,主机没有控制其上的finger,RPC,rlogin 等服务。攻击者可以通过这些进程的正常服务或漏洞攻击该主机,甚至得到管理员权限,进而对磁盘所有内容有任意复制和修改的权限。还需注意的是,不要轻易的`共享本机硬盘,因为这将导致恶意攻击者非法利用该主机的资源。

四、网络故障诊断的主要技术

无线器传感器网络在军事上的研究和应用最早可追溯到冷战时期,当时的美国建立了海底声纳监控系统用于监测前苏联核潜艇的相关信息,并在随后建立了雷达防空网络。

无线器传感器网络具有密集型、低成本、随机分布的特点,自组织性和容错能力使其不会因为某些节点因为在恶意攻击中的损坏而导致整个系统的崩溃,这一点是传统的传感器技术所无法比拟的,也正是这一点,使传感器网络非常适合应用于恶劣的战场环境中[6],主要包括侦察敌情,监控兵力、装备,判断核攻击、生物化学攻击等,能在多种场合、多方面满足军事信息获取的实时性、准确性、全面性等需求。

在无线传感器网络中,依据一定的选举机制,选择某些节点作为骨干节点,周边节点归属于骨干节点管理,再由骨干节点负责构建一个连通的网络,这类算法将整个网络划分为相连的区域,称为分簇算法或成簇算法,骨干节点是簇头节点,普通节点是簇内节点。层次型的成簇算法通常采用周期性选择簇头节点的做法使网络中的节点能量消耗均衡。

无线传感器网络是一种特殊的无线自组网,它是由大量密集部署在监控区域的智能传感器节点构成的一种网络应用系统。其快速方便的部署特性和完备的监控能力使其被广泛应用于军事、工业过程控制、卫生保健和环境监测等领域。在无线传感器网络中,节点的能量十分有限且一般没有能量补充,因此如何高效使用能量来最大化网络生命周期便成了传感器网络所面临的首要挑战。

五、研究展望

无线传感器网络的拓扑控制研究是推动WSN进一步发展的核心,能源管理策略的最优化涉及到网络从物理层到高层甚至物理层以下CMOS电路的设计等。

网络拓扑作为上层协议运行的重要平台,良好性质的结构能提高路由协议和MAC协议的效率,有助于实验WSN的首要设计目标。

从全文的分析中可知,实质上拓扑控制的内部矛盾可以概括为需以尽可能小的能量耗费均衡地实现全局数据传输,并以此为基础考虑算法本身实现的代价、现实环境中流量不可预知性及网络所处环境的影响等多方面。

;

③ 在无线传感器网络中,如何根据接收信号的强度来判断发送者的距离有具体的计算公式么

基于RSSI的定位
RSSI测量,一般利用信号传播的经验模型与理论模型。
对于经验模型,在实际定位前,先选取若干测试点,记录在这些点各基站收到的信号强度,建立各个点上的位置和信号强度关系的离线数据库(x,y,ss1,ss2,ss3)。在实际定位时,根据测得的信号强度(ss1′,ss2′,ss3′)和数据库中记录的信号强度进行比较,信号强度均方差最小的那个点的坐标作为节点的坐标。
对于理论模型,常采用无线电传播路径损耗模型进行分析。常用的传播路径损耗模型有:自由空间传播模型、对数距离路径损耗模型、哈它模型、对数一常态分布模型等。自由空间无线电传播路径损耗模型为:

式中,d为距信源的距离,单位为km;f为频率,单位为MHz;k为路径衰减因子。其他的模型模拟现实环境,但与现实环境还是有一定的差距。比如对数一常态分布模型,其路径损耗的计算公式为:

式中,Xσ是平均值为O的高斯分布随机变数,其标准差范围为4~10;k的范围在2~5之间。取d=1,代入式(1)可得,LOSS,即PL(d0)的值。此时各未知节点接收锚节点信号时的信号强度为:

RSSI=发射功率+天线增益一路径损耗(PL(d))
2.2 基于RSSI的三角形质心定位算法的数学模型
不论哪种模型,计算出的接收信号强度总与实际情况下有误差,因为实际环境的复杂性,换算出的锚节点到未知节点的距离d总是大于实际两节点间的距离。如图1所示,锚节点A,B,C,未知节点D,根据RSSI模型计算出的节点A和D的距离为rA;节点B和D的距离为rB;节点C和D的距离为rC。分别以A,B,C为圆心;rA,rB,rC为半径画圆,可得交叠区域。这里的三角形质心定位算法的基本思想是:计算三圆交叠区域的3个特征点的坐标,以这三个点为三角形的顶点,未知点即为三角形质心,如图2所示,特征点为E,F,G,特征点E点的计算方法为:

同理,可计算出F,G,此时未知点的坐标为由仿真得,在图2中,实际点为D;三角形质心算法出的估计点为M;三边测量法算出的估计点为N。可知,三角形质心算法的准确度更高。

3 基于RSSI的三角形质心算法过程
3.1 步骤
(1)锚节点周期性向周围广播信息,信息中包括自身节点ID及坐标。普通节点收到该信息后,对同一锚节点的RSSI取均值。
(2)当普通节点收集到一定数量的锚节点信息时,不再接收新信息。普通节点根据RSSI从强到弱对锚节点排序,并建立RSSI值与节点到锚节点距离的映射。建立3个集合。
锚节点集合:

(3)选取RSSI值大的前几个锚节点进行自身定位计算。
在B_set:中优先选择RSSI值大的信标节点组合成下面的锚节点集合,这是提高定位精度的关键。

对锚节点集合,依次根据(3)式算出3个交点的坐标,最后由质心算法,得出未知节点坐标。
(4)对求出的未知节点坐标集合取平均,得未知节点坐标。
3.2 误差定义
定义定位误差为ER,假设得到的未知节点的坐标为(xm,ym),其真实位置为(x,y),则定位误差ER为:

4 仿 真
利用Matlab仿真工具模拟三角形质心算法,考察该算法的性能。假设在100 m×100 m的正方形区域内,36个锚节点均匀分布,未知节点70个,分别用三边测量法和三角形质心定位算法进行仿真,仿真结果如图3所示。由图3可知,三角形质心算法比三边测量法,定位精度更高,当测距误差变大时,用三角形质心算法得出的平均定位误差比用三边测量法得出的小得多。

5 结 语
在此提出了将RSSI方法和三角形质心定位算法相结合的方法,通过仿真实验,将该算法和三边测量算法相比较,证明了该算法的优越性。下一步将研究在锚节点数量不同时的平均定位误差。

④ 无线传感器网络的优缺点

一、优点

(1) 数据机密性

数据机密性是重要的网络安全需求,要求所有敏感信息在存储和传输过程中都要保证其机密性,不得向任何非授权用户泄露信息的内容。

(2)数据完整性

有了机密性保证,攻击者可能无法获取信息的真实内容,但接收者并不能保证其收到的数据是正确的,因为恶意的中间节点可以截获、篡改和干扰信息的传输过程。通过数据完整性鉴别,可以确保数据传输过程中没有任何改变。

(3) 数据新鲜性

数据新鲜性问题是强调每次接收的数据都是发送方最新发送的数据,以此杜绝接收重复的信息。保证数据新鲜性的主要目的是防止重放(Replay)攻击。

二、缺点

根据网络层次的不同,无线传感器网络容易受到的威胁:

(1)物理层:主要的攻击方法为拥塞攻击和物理破坏。

(2)链路层:主要的攻击方法为碰撞攻击、耗尽攻击和非公平竞争。

(3)网络层:主要的攻击方法为丢弃和贪婪破坏、方向误导攻击、黑洞攻击和汇聚节点攻击。

(4)传输层:主要的攻击方法为泛洪攻击和同步破坏攻击。

(4)无线传感器网络判断扩展阅读:

一、相关特点

(1)组建方式自由。

无线网络传感器的组建不受任何外界条件的限制,组建者无论在何时何地,都可以快速地组建起一个功能完善的无线网络传感器网络,组建成功之后的维护管理工作也完全在网络内部进行。

(2)网络拓扑结构的不确定性。

从网络层次的方向来看,无线传感器的网络拓扑结构是变化不定的,例如构成网络拓扑结构的传感器节点可以随时增加或者减少,网络拓扑结构图可以随时被分开或者合并。

(3)控制方式不集中。

虽然无线传感器网络把基站和传感器的节点集中控制了起来,但是各个传感器节点之间的控制方式还是分散式的,路由和主机的功能由网络的终端实现各个主机独立运行,互不干涉,因此无线传感器网络的强度很高,很难被破坏。

(4)安全性不高。

无线传感器网络采用无线方式传递信息,因此传感器节点在传递信息的过程中很容易被外界入侵,从而导致信息的泄露和无线传感器网络的损坏,大部分无线传感器网络的节点都是暴露在外的,这大大降低了无线传感器网络的安全性。

二、组成结构

无线传感器网络主要由三大部分组成,包括节点、传感网络和用户这3部分。其中,节点一般是通过一定方式将节点覆盖在一定的范围,整个范围按照一定要求能够满足监测的范围。

传感网络是最主要的部分,它是将所有的节点信息通过固定的渠道进行收集,然后对这些节点信息进行一定的分析计算,将分析后的结果汇总到一个基站,最后通过卫星通信传输到指定的用户端,从而实现无线传感的要求。

⑤ 无线传感器网络的特点有哪些

无线传感器网络除了具有无线网络的移动性、断接性等共同特征以外,还具有很多其他鲜明的特点。
1)传感节点体积小,成本低,计算能力有限。
2)传感节点数量大、易失效,具有自适应性。
3)通信半径小,带宽很低。
4)电源能量是网络寿命的关键。
5)数据管理与处理是传感器网络的核心技术。

⑥ 什么是无线传感器网络

无线传感器的无线传输功能,常见的无线传输网络有RFID、ZigBee、红外、蓝牙、GPRS、4G、2G、Wi-Fi、NB-IoT。
与传统有线网络相比,无线传感器网络技术具有很明显的优势特点,主要的要求有: 低能耗、低成本、通用性、网络拓扑、安全、实时性、以数据为中心等。

⑦ 无线传感网络和无线传感器网络的区别~!!!急急急!!

传感器网络通常包括传感器节点,汇聚节点和管理节点。传感器节点任意的分布在某一监测区域内,节点以自组织的形式构成网络,通过多跳中继方式将监测数据传送到汇聚节点,最后通过Internet或其他网络通讯方式将监测信息传送到管理节点。同样的,用户可以通过管理节点进行命令的发布,告知传感器节点收集监测信息。 传感器节点是一个具有信息收集和处理能力的微系统,集成了传感器模块、信息处理模块、无线通讯模块和能量供应模块。 传感器模块负责监测区域内信息的采集和转换,信息处理模块负责管理整个传感器节点、存储和处理自身采集的数据或者其他节点发送来的数据,无线通讯模块负责与其他传感器节点进行通讯,能量供应模块负责对整个传感器网络的运行进行能量的供应。 传感器能量的供应是采用电池,节点能量有限,考虑尽可能的延长整个传感器网络的生命周期,在设计传感器节点时,保证能量供应的持续性是一个重要的设计原则。传感器节点能量消耗的模块主要是包括传感器模块、信息处理模块和无线通讯模块,而绝大部分的能量消耗是集中在无线通讯模块上,约占整个传感器节点能量消耗的80%。因此,目前提出的传感器节点通讯路由协议主要是围绕着减少能量消耗延长网络生命周期而进行设计的。 在无线传感器网络中,路由协议不仅关心单个节点的能量消耗,更关心整个网能量的均衡消耗,这样才能延长整个网络的生存期。同时,无线传感器网络是以数据为中心的,这在路由协议中表现的最为突出,每个节点没有必要采用全网统一的编址,选择路径可以不用根据节点的编址,更多的是根据感兴趣的数据建立数据源到汇聚节点之间的转发路径。目前提出了很多类型的传感器网络路由协议,就是基于上述的目的。 上 http://blog.sina.com.cn/guigucn 看看

⑧ 无线传感网络和无线传感器网络的区别!急急急!!

无线传感器网络的新技术。它是一种短距离、低速率无线网络技术,是一种介于无线标记技术和BlueTooth之间的技术提案。无线传感器网络(WirelessSensorNetwork)综合了微电子技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等先进技术,能够协同地实时监测、感知和采集网络覆盖区域中各种环境或监测对象的信息,并对其进行处理,处理后的信息通过无线方式发送,并以自组多跳的网络方式传送给观察者。 都是无线技术没有多大的区别,不过在编码和数剧传输方试有所不同。

⑨ 无线传感器网络与互联网的区别主要体现在哪些方面

无线传感器网络与互联网的区别主要体现在包含层次和识别方式上的不同

无线传感器网络(Wireless Sensor Networks, WSN)是一种分布式传感网络,它的末梢是可以感知和检查外部世界的传感器。WSN中的传感器通过无线方式通信,因此网络设置灵活,设备位置可以随时更改,还可以跟互联网进行有线或无线方式的连接。

互联网是利用局部网络或互联网等通信技术把传感器、控制器、机器、人员和物等通过新的方式联在一起,形成人与物、物与物相联,实现信息化、远程管理控制和智能化的网络。

无线传感器网络(Wireless Sensor Networks, WSN)是一种分布式传感网络,由大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络。

以协作地感知、采集、处理和传输网络覆盖地理区域内被感知对象的信息,并最终把这些信息发送给网络的所有者。传感器、感知对象和观察者构成了无线传感器网络的三个要素。

无线传感器网络所具有的众多类型的传感器,可探测包括地震、电磁、温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等周边环境中多种多样的现象。

⑩ 无线传感器网络的特征有哪些其传感器结点由哪些模块组成

无线传感器网络的特征非常多,无线传输,自动化调控,无需布线,安装时无需改动建筑,操作简单,维护方便,传输速率快,传输距离远等等,具体实际推荐到信立科技无线传感器去看看,传感器节点有由低功耗单片机、无线通讯模块、传感器元件等,希望对你有利

阅读全文

与无线传感器网络判断相关的资料

热点内容
网络共享中心没有网卡 浏览:521
电脑无法检测到网络代理 浏览:1373
笔记本电脑一天会用多少流量 浏览:571
苹果电脑整机转移新机 浏览:1376
突然无法连接工作网络 浏览:1053
联通网络怎么设置才好 浏览:1223
小区网络电脑怎么连接路由器 浏览:1029
p1108打印机网络共享 浏览:1211
怎么调节台式电脑护眼 浏览:690
深圳天虹苹果电脑 浏览:927
网络总是异常断开 浏览:612
中级配置台式电脑 浏览:986
中国网络安全的战士 浏览:630
同志网站在哪里 浏览:1413
版观看完整完结免费手机在线 浏览:1458
怎样切换默认数据网络设置 浏览:1110
肯德基无线网无法访问网络 浏览:1285
光纤猫怎么连接不上网络 浏览:1469
神武3手游网络连接 浏览:965
局网打印机网络共享 浏览:1000