❶ 急!!无线网络中时延影响因素及解决方法(丢包问题等等)
无线网络如果信号不好说明,该线路供应商的基站覆盖不是很好,当然也有办法,可以用信号放大器,这个具体如何弄可以咨询你所用的网络的运营商,比如联通就问联通的 移动就问移动的。但是有一点不太好,这信号放大器有辐射。尽量别用。
❷ 硕士论文开题报告
随着个人素质的提升,需要使用报告的情况越来越多,报告具有成文事后性的特点。写起报告来就毫无头绪?下面是我整理的硕士论文开题报告,仅供参考,欢迎大家阅读。
课题名称:基于信任管理的WSN安全数据融合算法的研究
一、立论依据
课题来源、选题依据和背景情况、课题研究目的、理论意义和实际应用价值。
1、课题来源。
国家自然科学基金资助项目(60873199)。
2、选题依据。
无线传感器网络具有硬件资源(存储能力、计算能力等)有限,电源容量有限,拓扑结构动态变化,节点众多难于全面管理等特点,这些特点给理论研究人员和工程技术人员提出了大量具有挑战性的研究课题,安全数据融合即为其一。虽然目前的研究已经取得了一些成果,但仍然不能满足应用的需求。无线传感器网络是以数据为中心的网络,如何保证其数据融合的安全性还是一个有待解决的问题。基于此,提出了本课题的研究。
3、背景情况。
微电子技术、计算技术和无线通信等技术的进步,推动了低功耗多功能传感器的快速发展,使其在微小体积内能够集成信息采集、数据处理和无线通信等多种功能。无线传感器网络就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织的网络系统,其目的是协作地感知、采集和处理网络覆盖区域中感知对象的信息,并发送给数据处理中心或基站。传感器网络被广泛的应用于军事、环境监测和预报、健康护理、智能家居、建筑物状态监控、复杂机械监控、城市交通,以及机场、大型工业园区的安全监测等领域。
传感器网络由大量传感器节点组成,收集的信息量大,存在冗余数据。传感器节点的计算能力、存储能力、通信能量以及携带的能量都十分有限,数据融合就是针对冗余数据进行网内处理,减少数据传输量,是减少能耗地重要技术之一。传感器网络中,将路由技术与数据融合技术结合是一个重要的问题。数据融合可以减少数据量,减轻数据汇聚过程中的网络拥塞,协助路由协议延长网络的生存时间。因而可以数据为中心的路由技术中应用数据融合技术。在战场等非可信环境或对可靠性要求非常高的环境中,数据融合也带来了风险。例如,敌人可以俘获节点获取节点中的所有信息,从而完全控制节点的行为,伪造和篡改数据。传统网络中的安全技术需要大量的存储空间和计算量,不适合能量、计算能力、存储空间都十分有限的传感器网络。因此必须设计适合传感器网络具有较强安全性的数据融合技术。
4、课题研究目的。
通过对无线传感器网络安全数据融合技术的研究,消除传感器中存在的、大量冗余数据,有效节省传感器节点能量消耗,延迟节点和网络的工作寿命,在有节点被捕获成为恶意节点情况下,及时检测恶意节点,消除恶意节点发送的恶意数据对数据融合的不良影响,保障了传感器网络数据融合过程的可靠性,维护传感器网络的正常工作。
5、理论意义。
无线传感器网络安全技术的研究涵盖了非常多的研究领域,安全数据融合技术是其中一个重要研究课题。本文把信任管理机制加入到传感器网络安全数据融合过程中,研究设计一种传感器节点信任值的计算方法,有效识别节点状态,实现可靠的数据融合。
6、实际应用价值。
对于工作在敌方环境中的无线传感器网络,传感器节点容易被地方捕获成为恶意节点,节点内存储的密钥等加密暴露,导致传统的基于加密和认证的无线传感器网络安全措施失效,在这种情况下,本研究可以可以及时识别恶意节点,保证传感器网络数据融合的可靠性,有效减少网络负载,延长网络工作寿命。
二、文献综述
国内外研究现状、发展动态;所阅文献的查阅范围及手段。
1、国内外研究现状、发展动态。
传感器网络与众不同的特点导致传感器网络与传统网络有极大不同。传感器网络的安全数据汇聚是要解决加密传输和数据汇聚的协调问题,实现数据的安全处理和传输。传统有线网络和无线网络的安全技术并不适用于传感器网络,这吸引了众多研究人员研究适合传感器网络的安全技术,并且提出了许多适合传感器网络的安全技术。安全数据融合算法是WSN安全性研究的重要方面,一直以来受到研究人员的重视,并取得了一定的研究成果。目前已有的研究成果如下:
(1)PerrigA等人提出了一种有效的WSN数据加密方法和广播认证方法,为WSN安全性研究作出了基础性工作。
(2)CAMH等人提出了一种基于模式码的能量有效安全数据融合算法,算法用簇头节点通过自定义的模式码的选取来组织传感器节的发送冗余数据实现数据融合,并且使用同态加密体重保证了数据在传输过程中的机密性。改方法对于每类数据类型需要保存和维护一个查找表,一旦查找表信息暴露,该安全方案将会失效。
(3)PrzydatekB等人提出的基于数据统计规律的数据融合算法,算法使用高效的`抽样和迭代的证明来保证有多个恶意节点发送错误数据的情况下,保证基站能够判定查询结果的准确性。但是该方法对于每种聚集函数都需要一个复杂的算法,为证明数据准确性,聚集节点需向基站发送大量参数,能量消耗太大。
(4)MahimkarA等人研究在WSN中使用椭圆曲线密码实现数据加密和安全数据融合。但是在传感器节的十分有限的情况下,使用公钥密码体系使节点能量消耗更加迅速,缩短网络的寿命。
WSN的信任管理是在WSN管理的基础上提出的,主要研究对节点进行信任值评估,借助信任值增强WSN的安全性。传统的基于密码体系的安全机制,主要用来抵抗外部攻击。假如节点被捕获,节点存储的密钥信息将泄漏,使密码体系失效。WSN信任管理作为密码体系的补充可以有效的抵抗这种内部攻击。将信任管理同WSN的安全构架相结合,可以全面提高WSN各项基础支撑技术的安全性和可靠性。
近年来,WSN信任管理受到了越来越多的关注,取得了一定的研究成果。
(1)Ganeriwal等人提出的RFSN是一个较为完整的WSN信任管理系统,该模型使用直接信息和坚决信息来更新节点的信誉,节点根据得到的信誉信息来选择是否和其他节点合作。可以建立仅由可信节点组成的网络环境。
(2)Garth等人中将信任管理用于簇头选举,采取冗余策略和挑战应答手段,尽可能的保证选举出的簇头节点为可信节点。
(3)Krasniewski提出了TIBFIT算法将信任用于WSN容错系统,把信任度作为一个参数融入到数据融合的过程中,提高对感知事件判断的准确率,其提出的信任度计算方法比较的简单。
无线传感器网络需要采取一定的措施来保证网络中数据传输的安全性。就目前的研究来看,对无线传感器网络安全数据融合技术和信任管理机制都取得了一些研究成果,但是如何使用信任管理机制保证安全的数据融合的研究并不多见,许多问题还有待于进一步深入研究。
2、所阅文献的查阅范围及手段。
充分利用校内图书馆资源、网络资源以及一些位于科技前沿的期刊学报。从对文献的学习中掌握足够的理论依据,获得启发以用于研究。
三、研究内容
1、研究构想与思路。
在本项目前期工作基础上建立WSN三级簇结构模型,节点分为普通节点,数据融合节点(免疫节点),簇头节点。在常规加密算法的基础上完成节点身份认证,通过消息认证码或数字水印技术保证传感器节点传送数据的真实性。上级节点保存下级节点的信任值,信任度的计算建立在传送数据的统计分析之上。节点加入网络后先初始化为一定的信任值,每轮数据发送时,接收节点收集数据后,量化数据的分布规律,主要包括单个节点历史数据分布规律和节点间数据差异的分析,确定数据分布模型(如正态分布、beta分布等),建立计算模型以确定节点间的信任值。信任值确定后,数据融合节点将普通节点按照不同的信任度进行分类,选取可信节点传送的数据按查询命令进行数据融合,将结果传送到簇头。簇头同样计算融合节点的信任度,保证数据融合节点的可靠性,计算最终数据查询结果,使用Josang信任模型给出结果的评价。各数据融合节点之间保持通信,通过对比数据的一致性确保簇头节点的可靠。
2、主要研究内容。
(1)设计有效的节点信任值计算方法,网络工作一段时间后,所有正常节点具有较高信任度,异常节点具有较低信任度,可初步判定为恶意节点。
(2)当融合节点或簇头节点发生异常时能及时发现异常,并上报基站。
(3)过滤异常数据和恶意数据,尽量减少因节点被捕获而对感知数据结果造成的影响。
(4)计算最终数据融合结果并且对最终数据融合结果做出评价来反映该结果的的可靠程度,供基站参考。
(5)进行算法的能量分析。
3、拟解决的关键技术。
(1)建立WSN一个簇内数据传送的三层簇结构模型,节点密集部署。
(2)模拟工作过程中节点被捕获成为恶意节点,恶意节点可能发送和真实数据差别较大的数据,也能发送和真实数据差别不大但会影响融合结果的数据。
(3)计算并更新传感器节点的信任值,分析信任值的有效性。
(4)记录各节点传送数据值,并与实际值进行比较,分析融合数据的准确性。测试当有较多节点被捕获时算法的工作效果。
4、拟采取的研究方法。
查阅国内外大量有关无线传感器网络数据融合技术和信任管理技术方面的文献,分析当前无线传感器网络安全领域的发展现状与未来。借鉴在该领域已经取得的研究成果和经验,系统而深入的研究在无线传感器网络数据融合中使用信任管理机制的主要问题。通过对已有的安全数据融合技术进行总结和分析,结合无线传感器网络自身的特点,设计出一种基于信任管理的无线传感器网络安全数据融合算法。
5、技术路线。
本课题尝试使用信任管理机制来保障在无线传感器网络中实现安全的数据融合,在现有的对无线传感器网络安全数据融合技术的研究基础上,与信任管理技术相结合,期望能够对传感器网络安全数据融合提出有效的解决方案。针对课题中的技术难点,通过查阅资料、向导师请教以及与项目组同学讨论的形式来解决。
6、实施方案。
(1)在Windows平台下使用omnet++进行仿真实验。
(2)建立无线传感器网络一个簇内数据传送的三层结构模型,节点密集部署。
(3)模拟无线传感器网络受到攻击时时的数据发送,根据数据统计规律计算和更新节点信任值。
(4)把节点按信任值分类,检测识别恶意节点。
(5)根据节点信任值选择有效数据完成数据融合。
7、可行性分析。
(1)理论知识积累:通过广泛阅读无线传感器网络数据融合技术方面的文献形成了一定量的理论知识储备,为课题的研究奠定基础。
(2)技术积累:熟悉OMNeT++网络仿真软件,具有一定的C++编程能力。
(3)技术合作:研究过程中遇到难以解决的问题时,可以向指导老师请教解决问题的基本思路。对项目相关课题有疑问时,可以向项目组同学请教。对实验平台的建立及使用有疑问时,可以和项目组同学共同讨论解决。
❸ 传感器网络实现时间同步的作用是什么
无线传感器网络时间同步机制的意义和作用主要体现在如下两方面:
1、传感器节点宽凯配通常需要彼此协作,去完成复杂的监测和感知任务数据融合是协作操作的典型例子,不同的节点采集的数据最终融合形成了一个有意义的结果。
2、传感器网络的一些节能方案是利用时间同步来实现的。
传感器网络综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等,能够通过各类集成化的微型传感器协作地实时监测、感知和采集各种环境或监测对象的信息,通过嵌入式系统对信息进行处理孙让,并通过随机自组织无线通信网络以多跳中继方式将所感知信息传送到用户终端。
(3)时延对无线传感器网络的影响扩展阅读:
根据不同的依据,无线传感器网络的定位方法可以进行如下分类:
(1)根据是否依靠测量距离,分为基于测距的定位和不需要测距的定位;
(2)根据部署的场合不同,分为室内定位和室外定位;
(3)根据信息收集的方式,网络收集传感器数据称为被动定位,节点主动发出信息,用于定位称为慎指主动定位无线传感器网络与应用。
❹ 关于无线传感器网络的安全,你认为未来面临的攻击主要包 含哪些
根据网络层次的不同,可以将无线传感器网络容易受到的威胁分为四类:
1、物理层:主要的攻击方法为拥塞攻击和物理破坏。
2、链路层:主要的攻击方法为碰撞攻击、耗尽攻击和非公平竞争。
3、网络层:主要的攻击方法为丢弃和贪婪破坏、方向误导攻击、黑洞攻击和汇聚节点攻击。
4、传输层:主要的攻击方法为泛洪攻击和同步破坏攻击。
安全需求
由于WSN使用无线通信,其通信链路不像有线网络一样可以做到私密可控。所以在设计传感器网络时,更要充分考虑信息安全问题。
手机SIM卡等智能卡,利用公钥基础设施(Public Key Infrastructure,PKI)机制,基本满足了电信等行业对信息安全的需求。同样,亦可使用PKI来满足WSN在信息安全方面的需求。
1、数据机密性
数据机密性是重要的网络安全需求,要求所有敏感信息在存储和传输过程中都要保证其机密性,不得向任何非授权用户泄露信息的内容。
2、数据完整性
有了机密性保证,攻击者可能无法获取信息的真实内容,但接收者并不能保证其收到的数据是正确的,因为恶意的中间节点可以截获、篡改和干扰信息的传输过程。通过数据完整性鉴别,可以确保数据传输过程中没有任何改变。
3、数据新鲜性
数据新鲜性问题是强调每次接收的数据都是发送方最新发送的数据,以此杜绝接收重复的信息。保证数据新鲜性的主要目的是防止重放(Replay)攻击。
4、可用性
可用性要求传感器网络能够随时按预先设定的工作方式向系统的合法用户提供信息访问服务,但攻击者可以通过伪造和信号干扰等方式使传感器网络处于部分或全部瘫痪状态,破坏系统的可用性,如拒绝服务(Denial of Service,DoS)攻击。
5、鲁棒性
无线传感器网络具有很强的动态性和不确定性,包括网络拓扑的变化、节点的消失或加入、面临各种威胁等,因此,无线传感器网络对各种安全攻击应具有较强的适应性,即使某次攻击行为得逞,该性能也能保障其影响最小化。
6、访问控制
访问控制要求能够对访问无线传感器网络的用户身份进行确认,确保其合法性。
❺ 无线通信网络如何分类
无线根据国际上所采用的通信技术种类可将无线传感器网络划分为无线广域网(WWAN)、无线城域网(WMAN)、无线局域网(WLAN)、无线个域网(WPAN)、低速率无线个域网(LR-WPAN)。以下是对各类网络各自常见和常用的通信技术进行简单介绍。
1、无线局域网(WLAN)
无线局域网是指以无线电波、红外线等无线媒介来代替目前有线局域网中的传输媒介(比如电缆)而构成的网络。无线局域网内使用的通信技术覆盖范围一般为半径100m左右,也就是说差不多几个房间或小公司的办公室。当然实际的覆盖范围受很多因素影响,比如通信区域中的高大障碍物。
2、IEEE
802.11系列标准是IEEE制订的无线局域网标准,主要对网络的物理层和媒质访问控制层进行规定,其中重点是对媒质访问控制层的规定。目前该系列的标准有:IEEE802.11、IEEE
。802.11b、IEEE
802.11a、IEEE
802.11g、IEEE
802.11d、IEEE
802.11e、IEEE802.11f、IEEE
802.11h、IEEE
802.11i、IEEE
802.11j等,其中每个标准都有其自身的优势和缺点。
3、WIFI
Wi-Fi是一种可以将个人电脑、手持设备(如PDA、手机)等终端以无线方式互相连接的技术。Wi-Fi是一个无线网路通信技术的品牌,由Wi-Fi联盟(Wi-Fi
Alliance)所持有。目的是改善基于IEEE
802.11标准的无线网路产品之间的互通性。现时一般人会把Wi-Fi及IEEE
802.11混为一谈。甚至把Wi-Fi等同于无线网际网路。
4、IEEE
802.11g
IEEE
802.11g是对IEEE
802.11b的一种高速物理层扩展,它也工作于2.4GHz频带,物理层采用直接序列扩频(DSSS)技术,而且它采用了OFDM技术,使无线网络传输速率最高可达54Mbps,并且与IEEE802.11b完全兼容。IEEE802.11g和IEEE802.11a的设计方式几乎是一样的。
❻ 无线传感器网络的优缺点
一、优点
(1) 数据机密性
数据机密性是重要的网络安全需求,要求所有敏感信息在存储和传输过程中都要保证其机密性,不得向任何非授权用户泄露信息的内容。
(2)数据完整性
有了机密性保证,攻击者可能无法获取信息的真实内容,但接收者并不能保证其收到的数据是正确的,因为恶意的中间节点可以截获、篡改和干扰信息的传输过程。通过数据完整性鉴别,可以确保数据传输过程中没有任何改变。
(3) 数据新鲜性
数据新鲜性问题是强调每次接收的数据都是发送方最新发送的数据,以此杜绝接收重复的信息。保证数据新鲜性的主要目的是防止重放(Replay)攻击。
二、缺点
根据网络层次的不同,无线传感器网络容易受到的威胁:
(1)物理层:主要的攻击方法为拥塞攻击和物理破坏。
(2)链路层:主要的攻击方法为碰撞攻击、耗尽攻击和非公平竞争。
(3)网络层:主要的攻击方法为丢弃和贪婪破坏、方向误导攻击、黑洞攻击和汇聚节点攻击。
(4)传输层:主要的攻击方法为泛洪攻击和同步破坏攻击。
(6)时延对无线传感器网络的影响扩展阅读:
一、相关特点
(1)组建方式自由。
无线网络传感器的组建不受任何外界条件的限制,组建者无论在何时何地,都可以快速地组建起一个功能完善的无线网络传感器网络,组建成功之后的维护管理工作也完全在网络内部进行。
(2)网络拓扑结构的不确定性。
从网络层次的方向来看,无线传感器的网络拓扑结构是变化不定的,例如构成网络拓扑结构的传感器节点可以随时增加或者减少,网络拓扑结构图可以随时被分开或者合并。
(3)控制方式不集中。
虽然无线传感器网络把基站和传感器的节点集中控制了起来,但是各个传感器节点之间的控制方式还是分散式的,路由和主机的功能由网络的终端实现各个主机独立运行,互不干涉,因此无线传感器网络的强度很高,很难被破坏。
(4)安全性不高。
无线传感器网络采用无线方式传递信息,因此传感器节点在传递信息的过程中很容易被外界入侵,从而导致信息的泄露和无线传感器网络的损坏,大部分无线传感器网络的节点都是暴露在外的,这大大降低了无线传感器网络的安全性。
二、组成结构
无线传感器网络主要由三大部分组成,包括节点、传感网络和用户这3部分。其中,节点一般是通过一定方式将节点覆盖在一定的范围,整个范围按照一定要求能够满足监测的范围。
传感网络是最主要的部分,它是将所有的节点信息通过固定的渠道进行收集,然后对这些节点信息进行一定的分析计算,将分析后的结果汇总到一个基站,最后通过卫星通信传输到指定的用户端,从而实现无线传感的要求。
❼ 网络时延都有哪些影响因素
网线质量,水晶头,路由器性能,无线信号干扰和强弱,网络带宽,运营商的问题,入户进线的接头,,光猫的质量问题,都有可能造成,具体原因要具体分析,
❽ 有关无线传感器网络中时间同步机制有哪些方法和策略
1 时间同步技术的重要性
传感器节点的时钟并不完美,会在时间上发生漂移,所以观察到的时间对于网络中的节点来说是不同的。但很多网络协议的应用,都需要一个共同的时间以使得网路中的节点全部或部分在瞬间是同步的。
第一,传感器节点需要彼此之间并行操作和协作去完成复杂的传感任务。如果在收集信息过程中,传感器节点缺乏统一的时间戳(即没有同步),估计将是不准确的。
第二,许多节能方案是利用时间同步来实现的。例如,传感器可以在适当的时候休眠(通过关闭传感器和收发器进入节能模式),在需要的时候再唤醒。在应用这种节能模式的时候,节点应该在同等的时间休眠和唤醒,也就是说当数据到来时,节点的接收器可以接收,这个需要传感器节点间精确的定时。
2 时间同步技术所关注的主要性能参数
时间同步技术的根本目的是为网络中节点的本地时钟提供共同的时间戳。对无线传感器
网络WSN(Wireless Sensor Networks)[1]
的时间同步应主要应考虑以下几个方面的问题:
(1)能量效率。同步的时间越长,消耗的能量越多,效率就越低。设计WSN的时间同步算法需以考虑传感器节点有效的能量资源为前提。
(2) 可扩展性和健壮性。时间同步机制应该支持网络中节点的数目或者密度的有效扩展,并保障一旦有节点失效时,余下网络有效且功能健全。
(3)精确度。针对不同的应用和目的,精确度的需求有所不用。
(4)同步期限。节点需要保持时间同步的时间长度可以是瞬时的,也可以和网络的寿命一样长。
(5)有效同步范围。可以给网络内所有节点提供时间,也可以给局部区域的节点提供时间。
(6)成本和尺寸。同步可能需要特定的硬件,另外,体积的大小也影响同步机制的实现。 (7)最大误差。一组传感器节点之间的最大时间差,或相对外部标准时间的最大差。 3 现有主要时间同步方法研究
时间同步技术是研究WSN的重要问题,许多具体应用都需要传感器节点本地时钟的同步,要求各种程度的同步精度。WSN具有自组织性、多跳性、动态拓扑性和资源受限性,尤其是节点的能量资源、计算能力、通信带宽、存储容量有限等特点,使时间同步方案有其特
殊的需求,也使得传统的时间同步算法不适合于这些网络[2]
。因此越来越多的研究集中在设
计适合WSN的时间同步算法[3]
。针对WSN,目前已经从不同角度提出了许多新的时间同步算法[4]
。
3.1 成对(pair-wise)同步的双向同步模式
代表算法是传感器网络时间同步协议TPSN(Timing-Sync Protocol for Sensor
Networks)[5~6]
。目的是提供WSN整个网络范围内节点间的时间同步。
该算法分两步:分级和同步。第一步的目的是建立分级的拓扑网络,每个节点有个级别。只有一个节点与外界通信获取外界时间,将其定为零级,叫做根节点,作为整个网络系统的时间源。在第二步,每个i级节点与i-1(上一级)级节点同步,最终所有的节点都与根节点同步,从而达到整个网络的时间同步。详细的时间同步过程如图 1 所示。
图1 TPSN 同步过程
设R为上层节点,S为下层节点,传播时间为d,两节点的时间偏差为θ。同步过程由节点R广播开始同步信息,节点S接收到信息以后,就开始准备时间同步过程。在T1时刻,节点S发送同步信息包,包含信息(T1),节点R在T2接收到同步信息,并记录下接收时间T2,这里满足关系:21TTd
节点R在T3时刻发送回复信息包,包含信息(T1,T2,T3)。在T4时刻S接收到同步信息包,满足关系:43TTd
最后,节点S利用上述2个时间表达式可计算出的值:(21)(43)2
TTTT
TPSN由于采用了在MAC层给同步包标记时间戳的方式,降低了发送端的不确定性,消除了访问时间带来的时间同步误差,使得同步效果更加有效。并且,TPSN算法对任意节点的同步误差取决于它距离根节点的跳数,而与网络中节点总数无关,使TPSN同步精度不会随节点数目增加而降级,从而使TPSN具有较好的扩展性。TPSN算法的缺点是一旦根节点失效,就要重新选择根节点,并重新进行分级和同步阶段的处理,增加了计算和能量开销,并随着跳数的增加,同步误差呈线性增长,准确性较低。另外,TPSN算法没有对时钟的频差进行估计,这使得它需要频繁同步,完成一次同步能量消耗较大。
3.2 接收方-接收方(Receiver-Receiver)模式
代表算法是参考广播时间同步协议RBS(Reference Broadcast Synchronization)[7]
。RBS是典型的基于接收方-接收方的同步算法,是Elson等人以“第三节点”实现同步的思想而提出的。该算法中,利用无线数据链路层的广播信道特性,基本思想为:节点(作为发
送者)通过物理层广播周期性地向其邻居节点(作为接收者)发送信标消息[10]
,邻居节点记录下广播信标达到的时间,并把这个时间作为参考点与时钟的读数相比较。为了计算时钟偏移,要交换对等邻居节点间的时间戳,确定它们之间的时间偏移量,然后其中一个根据接收
到的时间差值来修改其本地的时间,从而实现时间同步[11]
。
假如该算法在网络中有n个接收节点m个参考广播包,则任意一个节点接收到m个参考包后,会拿这些参考包到达的时间与其它n-1个接收节点接收到的参考包到达的时间进行比较,然后进行信息交换。图2为RBS算法的关键路径示意图。
网络接口卡
关键路径
接收者1
发送者
接收者2
图2 RBS算法的关键路径示意图
其计算公式如下:
,,1
1,:[,]()m
jkikkinjnoffsetijTTm
其中n表示接收者的数量,m表示参考包的数量,,rbT表示接收节点r接收到参考包b时的时钟。
此算法并不是同步发送者和接收者,而是使接收者彼此同步,有效避免了发送访问时间对同步的影响,将发送方延迟的不确定性从关键路径中排除,误差的来源主要是传输时间和接收时间的不确定性,从而获得了比利用节点间双向信息交换实现同步的方法更高的精确度。这种方法的最大弊端是信息的交换次数太多,发送节点和接收节点之间、接收节点彼此之间,都要经过消息交换后才能达到同步。计算复杂度较高,网络流量开销和能耗太大,不适合能量供应有限的场合。
3.3 发送方-接收方(Sender-Receiver)模式
基于发送方-接收方机制的时间同步算法的基本原理是:发送节点发送包含本地时间戳的时间同步消息,接收节点记录本地接收时间,并将其与同步消息中的时间戳进行比较,调整本地时钟。基于这种方法提出的时间同步算法有以下两种。
3.3.1 FTSP 算法[8]
泛洪时间同步协议FTSP(Flooding Time Synchronization Protocol)由Vanderbilt大学Branislav Kusy等提出,目标是实现整个网络的时间同步且误差控制在微秒级。该算法用单个广播消息实现发送节点与接收节点之间的时间同步。
其特点为:(1)通过对收发过程的分析,把时延细分为发送中断处理时延、编码时延、传播时延、解码时延、字节对齐时延、接收中断处理时延,进一步降低时延的不确定度;(2)通过发射多个信令包,使得接收节点可以利用最小方差线性拟合技术估算自己和发送节点的频率差和初相位差;(3)设计一套根节点选举机制,针对节点失效、新节点加入、拓扑变化
等情况进行优化,适合于恶劣环境[12]
。
FTSP算法对时钟漂移进行了线性回归分析。此算法考虑到在特定时间范围内节点时钟晶振频率是稳定的,因此节点间时钟偏移量与时间成线性关系,通过发送节点周期性广播时间同步消息,接收节点取得多个数据对,构造最佳拟合直线,通过回归直线,在误差允许的时间间隔内,节点可直接通过它来计算某一时间节点间的时钟偏移量而不必发送时间同步消息进行计算,从而减少了消息的发送次数并降低了系统能量开销。
FTSP结合TPSN和RBS的优点,不仅排除了发送方延迟的影响,而且对报文传输中接收方的不确定延迟(如中断处理时间、字节对齐时间、硬件编解码时间等)做了有效的估计。多跳的FTSP协议采用层次结构,根节点为同步源,可以适应大量传感器节点,对网络拓扑结构的变化和根节点的失效有健壮性,精确度较好。该算法通过采用MAC层时间戳和线性回归偏差补偿弥补相关的错误源,通过对一个数据包打多个时戳,进而取平均和滤除抖动较大的时戳,大大降低了中断和解码时间的影响。FTSP 采用洪泛的方式向远方节点传递时间基准节点的时间信息,洪泛的时间信息可由中转节点生成,因此误差累积不可避免。另外,FTSP的功耗和带宽的开销巨大。
3.3.2 DMTS 算法[9]
延迟测量时间同步DMTS (delay measurement time synchronization) 算法的同步机制是基于发送方-接收方的同步机制。DMTS 算法的实现策略是牺牲部分时间同步精度换取较低的计算复杂度和能耗,是一种能量消耗轻的时间同步算法。
DMTS算法的基本原理为:选择一个节点作为时间主节点广播同步时间,所有接收节点通过精确地测量从发送节点到接收节点的单向时间广播消息的延迟并结合发送节点时间戳,计算出时间调整值,接收节点设置它的时间为接收到消息携带的时间加上广播消息的传输延迟,调整自己的逻辑时钟值以和基准点达成同步,这样所有得到广播消息的节点都与主节点进行时间同步。发送节点和接收节点的时间延迟dt可由21()dtnttt得出。其中,nt为发送前导码和起始字符所需的时间,n为发送的信息位个数,t为发送一位所需时间;1t为接收节点在消息到达时的本地时间;2t为接收节点在调整自己的时钟之前的那一时刻记录的本地时间,21()tt是接收处理延迟。
DMTS 算法的优点是结合链路层打时间戳和时延估计等技术,消除了发送时延和访问时延的影响,算法简单,通信开销小。但DMTS算法没有估计时钟的频率偏差,时钟保持同步的时间较短,没有对位偏移产生的时间延迟进行估计,也没有消除时钟计时精度对同步精度的影响,因此其同步精度比FTSP略有下降,不适用于定位等要求高精度同步的应用。
基于发送方-接收方单向同步机制的算法在上述三类方法中需要发送的时间同步消息数目最少。发送节点只要发送一次同步消息,因而具有较低的网络流量开销和复杂度,减少了系统能耗。
4 结论
文章介绍了WSN时间同步算法的类型以及各自具有代表性的算法,分析了各算法的设计原理和优缺点。这些协议解决了WSN中时间同步所遇到的主要问题,但对于大型网络,已有的方法或多或少存在着一些问题:扩展性差、稳定性不高、收敛速度变慢、网络通信冲突、能耗增大。今后的研究热点将集中在节能和时间同步的安全性方面。这将对算法的容错性、有效范围和可扩展性提出更高的要求。
❾ 请问网络时延都有哪些影响因素
我从网上找了些原因过来.看了下写的很具体全面.希望对你有所帮助!!!
=============================================================================================================
物理原因,无外乎,你的电脑(包括网卡等设备),通信线路,服务器这三者
电脑物理方面:网卡性能差,不稳定,软网卡,均会造成丢包几率大幅上升
通信线路方面:线路质量差,如现在市场上的5类非屏蔽双绞线,大多都是质量极差的,质量过关的这类双绞线能传输的距离一般为100M,而市场上的这些垃圾只能在30M左右(实际使用过程中多次测过都如此)。以及线路附近的电磁干扰均会导致通信线路的数据传输出现问题,最终结果就是导致延迟
服务器方面:网络高峰期,网络负载高都会造成延迟,其他的都不必说了
一、网络自身问题
您想要连接的目标网站所在的服务器带宽不足或负载过大。处理办法很简单,请换个时间段再上或者换个目标网站。
二、网线问题导致网速变慢
我们知道,双绞线是由四对线按严格的规定紧密地绞和在一起的,用来减少串扰和背景噪音的影响。同时,在T568A标准和T568B标准中仅使用了双绞线的 1、2和3、6四条线,其中,1、2用于发送,3、6用于接收,而且1、2必须来自一个绕对,3、6必须来自一个绕对。只有这样,才能最大限度地避免串扰,保证数据传输。本人在实践中发现不按正确标准(T586A、T586B)制作的网线,存在很大的隐患。表现为:一种情况是刚开始使用时网速就很慢;另一种情况则是开始网速正常,但过了一段时间后,网速变慢。后一种情况在台式电脑上表现非常明显,但用笔记本电脑检查时网速却表现为正常。对于这一问题本人经多年实践发现,因不按正确标准制作的网线引起的网速变慢还同时与网卡的质量有关。一般台式计算机的网卡的性能不如笔记本电脑的,因此,在用交换法排除故障时,使用笔记本电脑检测网速正常并不能排除网线不按标准制作这一问题的存在。我们现在要求一律按T586A、T586B标准来压制网线,在检测故障时不能一律用笔记本电脑来代替台式电脑。
三、网络中存在回路导致网速变慢
当网络涉及的节点数不是很多、结构不是很复杂时,这种现象一般很少发生。但在一些比较复杂的网络中,经常有多余的备用线路,如无意间连上时会构成回路。比如网线从网络中心接到计算机一室,再从计算机一室接到计算机二室。同时从网络中心又有一条备用线路直接连到计算机二室,若这几条线同时接通,则构成回路,数据包会不断发送和校验数据,从而影响整体网速。这种情况查找比较困难。为避免这种情况发生,要求我们在铺设网线时一定养成良好的习惯:网线打上明显的标签,有备用线路的地方要做好记载。当怀疑有此类故障发生时,一般采用分区分段逐步排除的方法。
四、网络设备硬件故障引起的广播风暴而导致网速变慢
作为发现未知设备的主要手段,广播在网络中起着非常重要的作用。然而,随着网络中计算机数量的增多,广播包的数量会急剧增加。当广播包的数量达到30%时,网络的传输效率将会明显下降。当网卡或网络设备损坏后,会不停地发送广播包,从而导致广播风暴,使网络通信陷于瘫痪。因此,当网络设备硬件有故障时也会引起网速变慢。当怀疑有此类故障时,首先可采用置换法替换集线器或交换机来排除集线设备故障。如果这些设备没有故障,关掉集线器或交换机的电源后,DOS下用 “Ping”命令对所涉及计算机逐一测试,找到有故障网卡的计算机,更换新的网卡即可恢复网速正常。网卡、集线器以及交换机是最容易出现故障引起网速变慢的设备。
五、网络中某个端口形成了瓶颈导致网速变慢
实际上,路由器广域网端口和局域网端口、交换机端口、集线器端口和服务器网卡等都可能成为网络瓶颈。当网速变慢时,我们可在网络使用高峰时段,利用网管软件查看路由器、交换机、服务器端口的数据流量;也可用 Netstat命令统计各个端口的数据流量。据此确认网络数据流通瓶颈的位置,设法增加其带宽。具体方法很多,如更换服务器网卡为100M或1000M、安装多个网卡、划分多个VLAN、改变路由器配置来增加带宽等,都可以有效地缓解网络瓶颈,可以最大限度地提高数据传输速度。
六、蠕虫病毒的影响导致网速变慢
通过E-mail散发的蠕虫病毒对网络速度的影响越来越严重,危害性极大。这种病毒导致被感染的用户只要一上网就不停地往外发邮件,病毒选择用户个人电脑中的随机文档附加在用户机子的通讯簿的随机地址上进行邮件发送。成百上千的这种垃圾邮件有的排着队往外发送,有的又成批成批地被退回来堆在服务器上。造成个别骨干互联网出现明显拥塞,网速明显变慢,使局域网近于瘫痪。因此,我们必须及时升级所用杀毒软件;计算机也要及时升级、安装系统补丁程序,同时卸载不必要的服务、关闭不必要的端口,以提高系统的安全性和可靠性。
七、防火墙的过多使用
防火墙的过多使用也可导致网速变慢,处理办法不必多说,卸载下不必要的防火墙只保留一个功能强大的足以。
八、系统资源不足
您可能加载了太多的运用程序在后台运行,请合理的加载软件或删除无用的程序及文件,将资源空出,以达到提高网速的目的
---------------------------------------------------------------------------------------------------------------------------
专业版的 Windows XP默认保留了20%的带宽,其实这对于我们个人用户来说是没有多大的作用。与其闲着还不如充分地利用起来,方法如下:在“开始→运行”中输入 gpedit.msc,打开组策略编辑器。找到“计算机配置→管理模板→网络→QoS数据包调度程序”,选择右边的“限制可保留带宽”,选择“属性”打开限制可保留带宽属性对话框,选择“禁用”即可。经过这样重新设置就可以释放保留的20%的带宽了。
1.网卡绑定的协议太多 这种情况在局域网用户中很常见。网卡上如果绑定了许多协议,当数据通过网卡时,计算机就要花费很多时间来确定该数据使用哪种协议来传送,这时用户就会感觉到速度慢。解决方法是:用一块网卡只绑定PPPoE协议来连接ADSL
提供上网的外部连接,用另一块网卡绑定局域网的其他协议,从而各尽其职,提高性能,这样客户端上网速度就会提高。
2.ADSL设备散热不良 ADSL设备工作时发热量比较大,平时要注意散热。许多用户把ADSL设备和路由器、集线器等放在一个机柜里,不利于散热,对ADSL的正常工作有影响。ADSL等设备不可放在柜内,要分开摆放,设备之间留有通风散热通道,机房最好做到恒温,一般环境温度应控制在10~30℃。
3.访问互联网接口错误 这是由于Windows系统的Internet连接向导给IE指定的访问互联网接口错误引起的。EnterNet 300(虚拟拨号软件)使用的是局域网类型虚拟拨号,而IE缺省使用普通拨号。浏览的时候IE首先寻找拨号接口,找不到拨号以后就找局域网里面有没有代理服务器,最后才会找到EnterNet 300的接口,因此会很慢。只需要重新运行一遍Internet连接向导,选择局域网方式,并取消自动搜索代理服务器就可解决。
4.不能绑定TCP/IP协议 不能绑定TCP/IP多为网卡驱动程序未正确安装、网卡质量问题和PCI插槽不良。应先把设备管理器里的网卡驱动删除,重启后安装驱动程序;如果不好,再把网卡换一个PCI插槽;仍不好换一块网卡。
5.电话线路质量低劣 ADSL技术对电话线路的质量要求较高,目前采用的ADSL是一种RADSL(速率自适应DSL)。如果电信局到用户间的电话线路在某段时间受到外界因素干扰,RADSL会根据线路质量的优劣和传输距离的远近,动态地调整用户的访问速度。如访问的是国外站点,速度会受到出口带宽及对方站点线路、设备配置情况等因素影响,需要全网协调配合解决。线路问题主要有施工时未遵循施工标准而遗留的质量隐患,如没加塑料套管导致老鼠咬断线路;配线架或其他材料质量问题导致跳线接触不良;用户在装修时暗敷的室内线损坏等。
6.软件没有重新设置 用户装了ADSL后,上网条件已经发生变化,相应的工具软件没有重新设置,也是造成速度慢的原因之一。如通信软件QQ,就需要对它进行一些设置。从QQ面板中选择“系统参数”命令,点击“网络设置”标签,将原来的“拨号上网”改为“局域网接入Internet”就可以了。
7.微机硬件软件问题 硬件故障主要表现在网卡坏或没有正确安装;微机主板和网卡不兼容;微机配置低,尤其内存少导致运行速度慢。软件故障主要是由于用户不了解计算机知识,在使用过程中误操作,导致操作系统出错或拨号软件损坏而无法上网;用户浏览一些网页后,系统出现问题,在处理时不慎将备份的拨号软件删掉;微机重装系统后,没有安装拨号软件等等。这些软件故障只要重新安装拨号软件即可排除。
8.某一网站长时间网页打不开。 原因是在上网高峰期,许多用户访问同一个热点网站,由于该网站服务器处理不过来,或带宽较窄
会出现网络速度慢、长时间网页打不开的情况,请您最好避开高峰时段上网或改访问其它站点。
9.由于互联网节点故障,网络系统自动进行路由迂回,产生网络速度慢。请您耐心等待系统恢复。
10.由于"猫"的自身品质问题,引起的上网速度慢。请您更换优质"猫"。
11.电话线路的电气指标过低,引起的上网速度慢,请您更换优质线路。
12.外"猫"和主机的连接速率低,引起的上网速度慢,请您重新进行接口参数设置。
13.在低档机上运行高级操作系统,引起的上网速度慢,请您重新选择适合自己电脑的操作系统和浏览器。
14.由于浏览器的设置不当,引起的上网速度慢,请您重新设置网页的保留天数,把浏览器的缓存目录设置在传输速率最高的硬盘上,并适当增 加容量。
目前大多数拨号上网用户的电脑都用Windows系统,很多时都听到用户抱怨上网速度慢,但我们发现有一种情况是:当认为慢的时候其实是已经断线了,不过此时上网的图标仍然存在,这就造成了还在上网的假象。如你身边有电话可拿起电话来鉴别,还可以将鼠标拉至上网的图标上,按右键选择“状态”,观察有否收到数据,如在一段时间内都未有数据收到则可认定线路已断开,只能重新拨号
最终解决方法:去搞个 迅游,金山网游加速器之类的软件,缴费后,通过他们提供的技术服务,可以使你的网络延迟大幅降低,但也只是对那先延迟在600MS以上的比较明显
我们平时上网不论是 用QQ传文件,还是网络游戏~ 我们经常都会遇到延时这一问题,有时候可能是Moden原因,有的则是劣质网线或电话线的原因,今天我们一起看看到低有些什么原因,再结合自己的电脑网络情况分析 就知道问题所在和解决方法了。
❿ 无线传感器网络的特点及关键技术
无线传感器网络的特点及关键技术
无线传感器网络被普遍认为是二十一世纪最重要的技术之一,是目前计算机网络、无线通信和微电子技术等领域的研究热点。下面我为大家搜索整理了关于无线传感器网络的特点及关键技术,欢迎参考阅读!
一、无线传感器网络的特点
与其他类型的无线网络相比,传感器网络有着鲜明的特征。其主要特点可以归纳如下:
(一)传感器节点能量有限。当前传感器通常由内置的电池提供能量,由于体积受限,因而其携带的能量非常有限。如何使传感器节点有限的能量得到高效的利用,延长网络生存周期,这是传感器网络面临的首要挑战。
(二)通信能力有限。无线通信消耗的能量与通信距离的关系为E=kdn。其中,参数n的取值为2≤n≤4,n的取值与许多因素有关。但是不管n具体的取值,n的取值范围一旦确定,就表明,无线通信的能耗是随着距离的增加而更加急剧地增加的。因此,在满足网络连通性的要求下,应尽量采用多跳通信,减少单跳通信的距离。通常,传感器节点的通信范围在100m内。
(三)计算、存储和有限。一方面为了满足部署的要求,传感器节点往往体积小;另一方面出于成本控制的目的`,节点的价格低廉。这些因素限制了节点的硬件资源,从而影响到它的计算、存储和通信能力。
(四)节点数量多,密度高,覆盖面积广。为了能够全面准确的监测目标,往往会将成千上万的传感器节点部署在地理面积很大的区域内,而且节点密度会比较大,甚至在一些小范围内采用密集部署的方式。这样的部署方式,可以让网络获得全面的数据,提高信息的可靠性和准确性。
(五)自组织。传感器网络部署的区域往往没有基础设施,需要依靠传感器节点协同工作,以自组织的方式进行网络的配置和管理。
(六)拓扑结构动态变化。传感器网络的拓扑结构通常是动态变化的,例如部分节点故障或电量耗尽退出网络,有新的节点被部署并加入网络,为节约能量节点在工作和休眠状态间进行切换,周围环境的改变造成了无线通信链路的变化,以及传感器节点的移动等都会导致传感器网络拓扑结构发生变化。
(七)感知数据量巨大。传感器网络节点部署范围大、数量多,且网络中的每个传感器通常都产生较大的流式数据并具有实时性,因此网络中往往存在数量巨大的实时数据流。受传感器节点计算、存储和带宽等资源的限制,需要有效的分布式数据流管理、查询、分析和挖掘方法来对这些数据流进行处理。
(八)以数据为中心。对于传感器网络的用户而言,他们感兴趣的是获取关于特定监测目标的真实可靠的数据。在使用传感器网络时,用户直接使用其关注的事件作为任务提交给网络,而不是去访问具有某个或某些地址标识的节点。传感器网络中的查询、感知、传输都是以数据为中心展开的。
(九)传感器节点容易失效。由于传感器网络应用环境的特殊性以及能量等资源受限的原因,传感器节点失效(如电池能量耗尽等)的概率远大于传统无线网络节点。因此,需要研究如何提高数据的生存能力、增强网络的健壮性和容错性以保证部分传感器节点的损坏不会影响到全局任务的完成。此外,对于部署在事故和自然灾害易发区域的无线传感器网络,还需要进一步研究当事故和灾害导致大部分传感器节点失效时如何最大限度地将网络中的数据保存下来,以提供给灾害救援和事故原因分析等使用。
二、关键技术
无线传感器网络作为当今信息领域的研究热点,设计多学科交叉的研究领域,有非常多的关键技术有待研究和发现,下面列举若干。
(一)网络拓扑控制。通过拓扑控制自动生成良好的拓扑结构,能够提高路由协议和MAC协议的效率,可为数据融合、时间同步和目标定位等多方面奠定基础,有利于节省能量,延长网络生存周期。所以拓扑控制是无线传感器网络研究的核心技术之一。目前,拓扑控制主要研究的问题是在满足网络连通度的前提下,通过功率控制或骨干网节点的选择,剔除节点之间不必要的通信链路,生成一个高效的数据转发网络拓扑结构。
(二)介质访问控制(MAC)协议。在无线传感器网络中,MAC协议决定无线信道的使用方式,在传感器节点之间分配有限的无线通信资源,用来构建传感器网络系统的底层基础结构。MAC协议处于传感器网络协议的底层部分,对传感器网络的性能有较大影响,是保证无线传感器网络高效通信的关键网络协议之一。传感器网络的强大功能是由众多节点协作实现的。多点通信在局部范围需要MAC协议协调其间的无线信道分配,在整个网络范围内需要路由协议选择通信路径。
在设计MAC协议时,需要着重考虑以下几个方面:
(1)节省能量。传感器网络的节点一般是以干电池、纽扣电池等提供能量,能量有限。
(2)可扩展性。无线传感器网络的拓扑结构具有动态性。所以MAC协议也应具有可扩展性,以适应这种动态变化的拓扑结构。
(3)网络效率。网络效率包括网络的公平性、实时性、网络吞吐量以及带宽利用率等。
(三)路由协议。传感器网络路由协议的主要任务是在传感器节点和Sink节点之间建立路由以可靠地传递数据。由于传感器网络与具体应用之间存在较高的相关性,要设计一种通用的、能满足各种应用需求的路由协议是困难的,因而人们研究并提出了许多路由方案。
(四)定位技术。位置信息是传感器节点采集数据中不可或缺的一部分,没有位置信息的监测消息可能毫无意义。节点定位是确定传感器的每个节点的相对位置或绝对位置。节点定位分为集中定位方式和分布定位方式。定位机制也必须要满足自组织性,鲁棒性,能量高效和分布式计算等要求。
(五)数据融合。传感器网络为了有效的节省能量,可以在传感器节点收集数据的过程中,利用本地计算和存储能力将数据进行融合,取出冗余信息,从而达到节省能量的目的。
(六)安全技术。安全问题是无线传感器网络的重要问题。由于采用的是无线传输信道,网络存在偷听、恶意路由、消息篡改等安全问题。同时,网络的有限能量和有限处理、存储能力两个特点使安全问题的解决更加复杂化了。
;