导航:首页 > 无线网络 > 无线传感器网络时钟漂移是什么

无线传感器网络时钟漂移是什么

发布时间:2023-05-19 05:28:40

① 什么是无线传感器网络

本教程操作环境:windows10系统、Dell G3电脑。
什么是无线传感器网络无线传感器网络(Wireless Sensor Networks, WSN)是一种分布式传感网络,它的末梢是可以感知和检查外部世界的传感器。WSN中的传感器通过无线方式通信,因此网络设置灵活,设备位置可李戚以随时更改,还可以跟互联网进行有线或无线方式的连接。通过无线通信方式形成的一个多跳自组织网络。
基本信息

无线传感器网络是一项通过无线通信技术把数以万计的传感器节点以自由式进行组织与结合进而形成的网络形式。
构成传感器节点的单元分别为:数据采集单元、数据传输单元、数据处理单元以及能量供应单元。
其中数据采集单元通常都是采集监测区域内的信息并加以转换,比如光强度跟大气压力与湿度等;数据传输单元则主要以无线通信和交流信息以及缓扒发送接收那些采集进来的数据信息为主;数据处理单元通常处理的是全部节点的路由协议和管理任务以及定位装置等;能量供应单元为缩减传感器节点占据的面积,会选择微型电池的构成形式。
无线传感器网络当中的节点分为两种,一个是汇聚节点,一个是传感器节点。
汇聚节点主要指的是网关能够在传感器节点当中将错误的报告数据剔除,并与相关的报告相结合将数据加以融合,对发生的事件进行判断。
汇聚节点与用户节点连接可借助广域网络或者卫星直接通信,并对收集到的数据进行处理。
相较于传统式的网络和其他传感器相比,无线传感器网络有以下特点:
(1)组建方式自由。无线网络传感器的组建不受任何外界条件的限制,组建者无论在何时何地,都可以快速地组建起一个功能完善的无线网络传感器网络,组建成功之后的维护管理工作也完全在网络内部进行。
(2)网络拓扑结构的不确定性。从网络层次的方向来看,无线传感器的网络拓扑结构是变化不定的,哪哪陵例如构成网络拓扑结构的传感器节点可以随时增加或者减少,网络拓扑结构图可以随时被分开或者合并。
(3)控制方式不集中。虽然无线传感器网络把基站和传感器的节点集中控制了起来,但是各个传感器节点之间的控制方式还是分散式的,路由和主机的功能由网络的终端实现各个主机独立运行,互不干涉,因此无线传感器网络的强度很高,很难被破坏。
(4)安全性不高。无线传感器网络采用无线方式传递信息,因此传感器节点在传递信息的过程中很容易被外界入侵,从而导致信息的泄露和无线传感器网络的损坏,大部分无线传感器网络的节点都是暴露在外的,这大大降低了无线传感器网络的安全性。
组成结构:

无线传感器网络主要由三大部分组成,包括节点、传感网络和用户这3部分。其中,节点一般是通过一定方式将节点覆盖在一定的范围,整个范围按照一定要求能够满足监测的范围;传感网络是最主要的部分,它是将所有的节点信息通过固定的渠道进行收集,然后对这些节点信息进行一定的分析计算,将分析后的结果汇总到一个基站,最后通过卫星通信传输到指定的用户端,从而实现无线传感的要求。

② 无线传感器网络

无线传感器网络所具有的众多类型的传感器,可探测包括地震、电磁、温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等周边环境中多种多样的现象。基于MEMS的微传感技术和无线联网技术为无线传感器网络赋予了广阔的应用前景。

③ 5、无线传感器网络的睡眠调度目的

一 无线传感器网络简介

短距离无线通信特点:通信距离短,覆盖距离一般为10~200m。无线发射器的发射功率较低,发射功率一般小于100mW。工作频率多为免付费、免申请的全球通用的工业、科学、医疗频段。
短距离无线通信技术的概念:指集信息采集、信息传输、信息处理于一体的综合型智能信息系统,并且其传输距离限制在一个较短的范围内。
低成本、低功耗和对等通信是短距离无线通信技术的三个重要特征和优势。
常见的无线通信技术有IrDA技术、蓝牙技术、WIFI技术、RFID技术、UWB技术、Zigbee技术。
以数据传输为主要功能的无线网络技术称为无线数据网络。
ALOHA协议是一种使用无线广播技术的分组交换计算机网络协议,也是最早最基本的无线数据通信协议。
ALOHA协议分为纯ALOHA和时隙ALOHA两种。
ALOHA技术的特点:原理非常简单,特别便于无线设备实现。
无线局域网是在各工作站和设备之间,不再使用通信电缆,而采用无线的通信方式连接的局域网。
无线局域网的传输媒体主要有两种:无线电波和红外线。
根据调制的方式不同,无线电波方式可分为扩展频谱方式和窄带调制方式。
扩展频谱方式是指用来传输信息的射频带宽远大于信息本身带宽的一种通信方式,它虽然牺牲了频带带宽,却提高了通信系统的抗干扰能力和安全性。
窄带调制方式是指数据基带信号的频谱不做任何扩展即被直接搬移到射频发射出去,与扩展频谱方式相比,窄带调制方式占用频带少,频带利用率高,但是通信可靠性较差。
红外线方式最大的有限是不受无线电干扰,且红外线的使用不受国家无线电管理委员会限制,但是红外线对非透明物体的透过性较差,传输距离受限。
无线个域网是一种与无线广域网、无线城域网、无线局域网并列但覆盖范围较小的无线网络,是为了实现活动半径小、业务类型丰富困肢肢、面向特定群体、无线无缝的连接而提出的新兴无线通信网络技术。
无线自组织网络是一个由几十到上百个节点组成的、采用无线通信方式的、动态组的多跳的移动性对等网络。其目的是通过动态路由和移动管理技术传输具有服务质量要求的多媒体信息流。
无线传感器网络的主要组成部分是集成有传感器、数据处理单元和通信模块的节点,各节点汪世通过协议自组成一个分布式网络,再将采集来的数据通过优化后经无线电波传输给信息处理中心。
传感器网络的特点:
大规模网络
自组织网络
多跳路由
动态性网络
以数据为中心的网络
兼容性应用的网络
传感器节点的限制
电源能量有限
通信能量有限
计算和存储能力有限
拓扑控制是无线传感器网络研究的核心技术之一。
传感器网络中的拓扑控制按照研究方向可分为:节点功率控制和层次型拓扑结构组织。饥睁
无线传感器网络最基本的安全机制:机密性、点到点的消息认证、完整性鉴别、新鲜性、认证广播和安全管理。
时间同步是需要协同工作的传感器网络系统的一个关键机制。
三个基本的时间同步机制:RBS、TINY/MINI-SYNC和TPSN。
RBS机制是基于接收者-接收者的时钟同步一个节点广播时钟参考分组,广播域内的两个节点分别采用本地时钟记录参考分组的到达时间,通过交换记录时间来实现它们之间的时钟同步。
TINY/MINI-SYNC是简单的轻量级的同步机制:假设节点的时钟漂移遵循线性变化,那么两个节点之间的时间偏移也是线性的,可通过减缓时标分组来估计两个节点之间最优匹配偏移量。

④ 什么是无线传感器网络

无线传感器的无线传输功能,常见的无线传输网络有RFID、ZigBee、红外、蓝牙、GPRS、4G、2G、Wi-Fi、NB-IoT。
与传统有线网络相比,无线传感器网络技术具有很明显的优势特点,主要的要求有: 低能耗、低成本、通用性、网络拓扑、安全、实时性、以数据为中心等。

⑤ 无线传感器网络

无线传感器网络:是一种分布式传感网络,它的末梢是可以感知和检查外部世界的传感器。无线传感器网络中的传感器通过无线方式通信,因此网络设置老宽早灵活,设备位置可以随时更改,还可以跟互联网进行有线或无线方式的连接。通过无线通信方式形成的一个多巧卜跳自组织网络。

无线传感器网络的发展得益于微机电系统、片上系统侍雀、无线通信和低功耗嵌入式技术的飞速发展。无线传感器网络广泛应用于军事、智能交通、环境监控、医疗卫生等多个领域。

⑥ 无线传感器网络

无线传感器网络(wirelesssensornetwork,WSN)是综合了传感器技术、嵌入式计算机技术、分布式信息处理技术和无线通信技术,能够协作地实时监测、感知和采集网络分布区域内的各种环境或监测对象的信息,并对这些数据进行处理,获得详尽而准确的信息。传送到需要这些信息的用户。它是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成一个多跳的自组织的网络系统。传感器、感知对象和观察者构成了传感器网络的三要素。
无线传感器网络作为当今信息领域新的研究热点,涉及到许多学科交叉的研究领域,要解决的关键技术很多,比如:网络拓扑控制、网络协议、网络安全、时间同步、定位技术、数据融合、数据管理、无线通信技术等方面,同时还要考虑传感器的电源和节能等问题。
所谓部署问题,就是在一定的区域内,通过适当的策略布置传感器节点以满足某种特定的需求。优化节点数目和节点分布形式,高效利用有限的传感器网络资源,最大程度地降低网络能耗,均是节点部署时应注意的问题。
目前的研究主要集中在网络的覆盖问题、连通问题和能耗问题3个方面。
基于节点部署方式的覆盖:1)确定性覆盖2)自组织覆盖
基于网格的覆盖:1)方形网格2)菱形网格
被监测目标状态的覆盖:1)静态目标覆盖2)动态目标覆盖
连通问题可描述为在传感器节点能量有限,感知、通信和计算能力受限的情况下,采用一定的策略(通常设计有效的算法)在目标区域中部署传感器节点,使得网络中的各个活跃节点之间能够通过一跳或多跳方式进行通信。连通问题涉及到节点通信距离和通信范围的概念。连通问题分为两类:纯连通与路由连通。
覆盖中的节能对于覆盖问题,通常采用节点集轮换机制来调度节点的活跃/休眠时间。连通中的节能针对连通问题,也可采用节点集轮换机制与调整节点通信距离的方法。而文献中涉及最多的主要是从节约网络能量和平衡节点剩余能量的角度进行路由协议的研究。

⑦ 什么是无线传感网络

无线传感器孝丛旦网络是一种分布式传感网络,它的末梢是可以感知和检查外部世界的传感器。WSN中的传感器通过无线方式通信,由大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,以协作地感知、采集、处理和传输网络覆盖地理区域内被感知对象的信息,并最终把这些信息发送给网络所有者的。郑码因此网络设置灵活,设备位置可以随时更改,还可以跟互联网进行有线或无线方式的连接,通过无线通信方式形成的一个多跳自组织的网络。

无线传感器网络所具有的众多类型的传感器,可探测包括地震、电磁、温度、湿度、巧扰噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等周边环境中多种多样的现象。潜在的应用领域可以归纳为: 军事、航空、防爆、救灾、环境、医疗、保健、家居、工业、商业等领域。

⑧ 无线传感器知识大全,看完请收藏!

物联网是在现有互联网的基础上发展起来的,物联网除了融合网络、信息技术、RFID技术之外,还引入了无线传感器技术,使得物联网有了更深的发展,而且无线传感器技术还与嵌入式系统技术、现代网络以及无线通信技术进行结合,所以无线传感器本身也是一个炙手可热的研究领域。

传感器技术

    无线传感器网络结构介绍

    无线传感器网络系统通常包括汇聚节点(Sinknode)、传感器节点(Sensornode)与管理节点。

    大量传感器节点随机部署在监测区域附近或者内部,传感器节点检测的数据沿着其他的传感器节点逐条地进行传输,在传输的过程中检测数据可能会被多个节点进行处理,经过跳后路由到汇聚的节点,然后通过卫星或者互联网传输到达管理节点,而用户通过对节点的管理对传感器网络进行管理、发布监测数据和管理。

传感器整体部署

    无线传感器网络特点介绍

    规模大

    为了能够获取精确信息,在监测区域通常部署大量传感器节点,一般情况下会达到上万个甚至更多,传感器网络的大规模性主要包括了两个方面的含义:一方面是传感器节点的部署非常密集,在面积狭小的空间内密集的部署了大量的传感器节点。另一方面,是传感器节点分布在区域很大的范围内,比如在原始的大森林中采用传感器网络进行森林防火的安全环境监测,这种在区域宽广的范围内需要部署大量的传感器节点。

    可靠性

    无线传感器节点非常适合部署在自然环境恶劣或者人类不宜居住的区域,这些节点可能工作在环境较恶劣的地方,遭受风吹、雨淋、日晒,还甚至遭到人或者动物的破坏,而这些传感器节点往往采用随机进行部署,部署的方式是利用飞机散播,或炮弹发射到指定的区域进行部署,所以这些节点要非常坚固,不容易被损坏,可靠性很强。

    自组织

    在传感器网络应用中,通常情况下传感器节点会被放置在没有基础结构的地方,其实传感器节点的相隔距离、精确位置不能预先确定。你可以想象,通过飞机散播或者炮弹发射大量传感器节点到面积广阔的森林、山谷之中,这样就必须要求传感器节点本身具有自组织的能力,能够进行自我管理和配置,通过清逗网络协议和拓扑控制机制自动形成转发监测数据的多跳无线网络系统。

    动态性

    传感器网络的拓扑结构有可能会因为下列因素而发生改变:①环境的变化可能会造成无线通信链路带宽产生变化,有时甚至会时断时通;②电力资源出现故障或耗尽导致的传感器节点故障或者失效;③传感器网络的感知对象、传感器与观察者这三要素都可能具有移动性;④有新节点加入,通常这种情况就必须要求传感器网络系统要能适应这种变化,具有动态系统可重构性。

    无线传感器网络有哪些安全问题

    安全路由

    一般在无线传感器网络中,大量的传感器节点都密集分布在一个区域内,信息传输可能要经过很多节点才能到达目的地,而且传感器网络具有多跳结构和动态性,因此,需要去每个节点都应具备路由功能,

    由于每个虚猜节点都是潜在的路由节点,因此更易受到攻击,这样就可能使网络不怎么安全,安全的路由算法会直接影响无线传感器的可用性和安全性,安全路由协议一般是采用认证和链路层差正型加密,身份认证、多路径路由、双向连接认证和认证广播等机制,非常有效的提高了网络抵御外部攻击的能力,从而增强路由的安全性。

⑨ 有关无线传感器网络中时间同步机制有哪些方法和策略

1  时间同步技术的重要性 
传感器节点的时钟并不完美,会在时间上发生漂移,所以观察到的时间对于网络中的节点来说是不同的。但很多网络协议的应用,都需要一个共同的时间以使得网路中的节点全部或部分在瞬间是同步的。 
第一,传感器节点需要彼此之间并行操作和协作去完成复杂的传感任务。如果在收集信息过程中,传感器节点缺乏统一的时间戳(即没有同步),估计将是不准确的。 
第二,许多节能方案是利用时间同步来实现的。例如,传感器可以在适当的时候休眠(通过关闭传感器和收发器进入节能模式),在需要的时候再唤醒。在应用这种节能模式的时候,节点应该在同等的时间休眠和唤醒,也就是说当数据到来时,节点的接收器可以接收,这个需要传感器节点间精确的定时。 
2  时间同步技术所关注的主要性能参数 
时间同步技术的根本目的是为网络中节点的本地时钟提供共同的时间戳。对无线传感器
网络WSN(Wireless Sensor Networks)[1]
的时间同步应主要应考虑以下几个方面的问题: 
(1)能量效率。同步的时间越长,消耗的能量越多,效率就越低。设计WSN的时间同步算法需以考虑传感器节点有效的能量资源为前提。 
(2) 可扩展性和健壮性。时间同步机制应该支持网络中节点的数目或者密度的有效扩展,并保障一旦有节点失效时,余下网络有效且功能健全。 
(3)精确度。针对不同的应用和目的,精确度的需求有所不用。 
(4)同步期限。节点需要保持时间同步的时间长度可以是瞬时的,也可以和网络的寿命一样长。 
(5)有效同步范围。可以给网络内所有节点提供时间,也可以给局部区域的节点提供时间。 
(6)成本和尺寸。同步可能需要特定的硬件,另外,体积的大小也影响同步机制的实现。 (7)最大误差。一组传感器节点之间的最大时间差,或相对外部标准时间的最大差。 3  现有主要时间同步方法研究 
时间同步技术是研究WSN的重要问题,许多具体应用都需要传感器节点本地时钟的同步,要求各种程度的同步精度。WSN具有自组织性、多跳性、动态拓扑性和资源受限性,尤其是节点的能量资源、计算能力、通信带宽、存储容量有限等特点,使时间同步方案有其特
殊的需求,也使得传统的时间同步算法不适合于这些网络[2]
。因此越来越多的研究集中在设
计适合WSN的时间同步算法[3]
。针对WSN,目前已经从不同角度提出了许多新的时间同步算法[4]
。 
3.1  成对(pair-wise)同步的双向同步模式 
代表算法是传感器网络时间同步协议TPSN(Timing-Sync Protocol for Sensor 
Networks)[5~6]
。目的是提供WSN整个网络范围内节点间的时间同步。 
该算法分两步:分级和同步。第一步的目的是建立分级的拓扑网络,每个节点有个级别。只有一个节点与外界通信获取外界时间,将其定为零级,叫做根节点,作为整个网络系统的时间源。在第二步,每个i级节点与i-1(上一级)级节点同步,最终所有的节点都与根节点同步,从而达到整个网络的时间同步。详细的时间同步过程如图 1 所示。 
 

图1  TPSN 同步过程 
 
设R为上层节点,S为下层节点,传播时间为d,两节点的时间偏差为θ。同步过程由节点R广播开始同步信息,节点S接收到信息以后,就开始准备时间同步过程。在T1时刻,节点S发送同步信息包,包含信息(T1),节点R在T2接收到同步信息,并记录下接收时间T2,这里满足关系:21TTd 
节点R在T3时刻发送回复信息包,包含信息(T1,T2,T3)。在T4时刻S接收到同步信息包,满足关系:43TTd 
最后,节点S利用上述2个时间表达式可计算出的值:(21)(43)2
TTTT 
TPSN由于采用了在MAC层给同步包标记时间戳的方式,降低了发送端的不确定性,消除了访问时间带来的时间同步误差,使得同步效果更加有效。并且,TPSN算法对任意节点的同步误差取决于它距离根节点的跳数,而与网络中节点总数无关,使TPSN同步精度不会随节点数目增加而降级,从而使TPSN具有较好的扩展性。TPSN算法的缺点是一旦根节点失效,就要重新选择根节点,并重新进行分级和同步阶段的处理,增加了计算和能量开销,并随着跳数的增加,同步误差呈线性增长,准确性较低。另外,TPSN算法没有对时钟的频差进行估计,这使得它需要频繁同步,完成一次同步能量消耗较大。 
3.2  接收方-接收方(Receiver-Receiver)模式 
代表算法是参考广播时间同步协议RBS(Reference Broadcast Synchronization)[7]
。RBS是典型的基于接收方-接收方的同步算法,是Elson等人以“第三节点”实现同步的思想而提出的。该算法中,利用无线数据链路层的广播信道特性,基本思想为:节点(作为发
送者)通过物理层广播周期性地向其邻居节点(作为接收者)发送信标消息[10]
,邻居节点记录下广播信标达到的时间,并把这个时间作为参考点与时钟的读数相比较。为了计算时钟偏移,要交换对等邻居节点间的时间戳,确定它们之间的时间偏移量,然后其中一个根据接收
到的时间差值来修改其本地的时间,从而实现时间同步[11]
。 
假如该算法在网络中有n个接收节点m个参考广播包,则任意一个节点接收到m个参考包后,会拿这些参考包到达的时间与其它n-1个接收节点接收到的参考包到达的时间进行比较,然后进行信息交换。图2为RBS算法的关键路径示意图。 
网络接口卡
关键路径
接收者1
发送者
接收者2
 
图2  RBS算法的关键路径示意图 
 
其计算公式如下: 
,,1
1,:[,]()m
jkikkinjnoffsetijTTm
 其中n表示接收者的数量,m表示参考包的数量,,rbT表示接收节点r接收到参考包b时的时钟。 

此算法并不是同步发送者和接收者,而是使接收者彼此同步,有效避免了发送访问时间对同步的影响,将发送方延迟的不确定性从关键路径中排除,误差的来源主要是传输时间和接收时间的不确定性,从而获得了比利用节点间双向信息交换实现同步的方法更高的精确度。这种方法的最大弊端是信息的交换次数太多,发送节点和接收节点之间、接收节点彼此之间,都要经过消息交换后才能达到同步。计算复杂度较高,网络流量开销和能耗太大,不适合能量供应有限的场合。 
3.3  发送方-接收方(Sender-Receiver)模式 
基于发送方-接收方机制的时间同步算法的基本原理是:发送节点发送包含本地时间戳的时间同步消息,接收节点记录本地接收时间,并将其与同步消息中的时间戳进行比较,调整本地时钟。基于这种方法提出的时间同步算法有以下两种。 
3.3.1  FTSP 算法[8]
 
泛洪时间同步协议FTSP(Flooding Time Synchronization Protocol)由Vanderbilt大学Branislav Kusy等提出,目标是实现整个网络的时间同步且误差控制在微秒级。该算法用单个广播消息实现发送节点与接收节点之间的时间同步。 
其特点为:(1)通过对收发过程的分析,把时延细分为发送中断处理时延、编码时延、传播时延、解码时延、字节对齐时延、接收中断处理时延,进一步降低时延的不确定度;(2)通过发射多个信令包,使得接收节点可以利用最小方差线性拟合技术估算自己和发送节点的频率差和初相位差;(3)设计一套根节点选举机制,针对节点失效、新节点加入、拓扑变化
等情况进行优化,适合于恶劣环境[12]
。 
FTSP算法对时钟漂移进行了线性回归分析。此算法考虑到在特定时间范围内节点时钟晶振频率是稳定的,因此节点间时钟偏移量与时间成线性关系,通过发送节点周期性广播时间同步消息,接收节点取得多个数据对,构造最佳拟合直线,通过回归直线,在误差允许的时间间隔内,节点可直接通过它来计算某一时间节点间的时钟偏移量而不必发送时间同步消息进行计算,从而减少了消息的发送次数并降低了系统能量开销。 
FTSP结合TPSN和RBS的优点,不仅排除了发送方延迟的影响,而且对报文传输中接收方的不确定延迟(如中断处理时间、字节对齐时间、硬件编解码时间等)做了有效的估计。多跳的FTSP协议采用层次结构,根节点为同步源,可以适应大量传感器节点,对网络拓扑结构的变化和根节点的失效有健壮性,精确度较好。该算法通过采用MAC层时间戳和线性回归偏差补偿弥补相关的错误源,通过对一个数据包打多个时戳,进而取平均和滤除抖动较大的时戳,大大降低了中断和解码时间的影响。FTSP 采用洪泛的方式向远方节点传递时间基准节点的时间信息,洪泛的时间信息可由中转节点生成,因此误差累积不可避免。另外,FTSP的功耗和带宽的开销巨大。 
3.3.2  DMTS 算法[9]
 
延迟测量时间同步DMTS (delay measurement time synchronization) 算法的同步机制是基于发送方-接收方的同步机制。DMTS 算法的实现策略是牺牲部分时间同步精度换取较低的计算复杂度和能耗,是一种能量消耗轻的时间同步算法。 
DMTS算法的基本原理为:选择一个节点作为时间主节点广播同步时间,所有接收节点通过精确地测量从发送节点到接收节点的单向时间广播消息的延迟并结合发送节点时间戳,计算出时间调整值,接收节点设置它的时间为接收到消息携带的时间加上广播消息的传输延迟,调整自己的逻辑时钟值以和基准点达成同步,这样所有得到广播消息的节点都与主节点进行时间同步。发送节点和接收节点的时间延迟dt可由21()dtnttt得出。其中,nt为发送前导码和起始字符所需的时间,n为发送的信息位个数,t为发送一位所需时间;1t为接收节点在消息到达时的本地时间;2t为接收节点在调整自己的时钟之前的那一时刻记录的本地时间,21()tt是接收处理延迟。 

DMTS 算法的优点是结合链路层打时间戳和时延估计等技术,消除了发送时延和访问时延的影响,算法简单,通信开销小。但DMTS算法没有估计时钟的频率偏差,时钟保持同步的时间较短,没有对位偏移产生的时间延迟进行估计,也没有消除时钟计时精度对同步精度的影响,因此其同步精度比FTSP略有下降,不适用于定位等要求高精度同步的应用。 
基于发送方-接收方单向同步机制的算法在上述三类方法中需要发送的时间同步消息数目最少。发送节点只要发送一次同步消息,因而具有较低的网络流量开销和复杂度,减少了系统能耗。 
4  结论 
文章介绍了WSN时间同步算法的类型以及各自具有代表性的算法,分析了各算法的设计原理和优缺点。这些协议解决了WSN中时间同步所遇到的主要问题,但对于大型网络,已有的方法或多或少存在着一些问题:扩展性差、稳定性不高、收敛速度变慢、网络通信冲突、能耗增大。今后的研究热点将集中在节能和时间同步的安全性方面。这将对算法的容错性、有效范围和可扩展性提出更高的要求。 

阅读全文

与无线传感器网络时钟漂移是什么相关的资料

热点内容
网络共享中心没有网卡 浏览:513
电脑无法检测到网络代理 浏览:1364
笔记本电脑一天会用多少流量 浏览:551
苹果电脑整机转移新机 浏览:1368
突然无法连接工作网络 浏览:1033
联通网络怎么设置才好 浏览:1213
小区网络电脑怎么连接路由器 浏览:1009
p1108打印机网络共享 浏览:1203
怎么调节台式电脑护眼 浏览:670
深圳天虹苹果电脑 浏览:909
网络总是异常断开 浏览:603
中级配置台式电脑 浏览:966
中国网络安全的战士 浏览:623
同志网站在哪里 浏览:1404
版观看完整完结免费手机在线 浏览:1449
怎样切换默认数据网络设置 浏览:1099
肯德基无线网无法访问网络 浏览:1275
光纤猫怎么连接不上网络 浏览:1448
神武3手游网络连接 浏览:956
局网打印机网络共享 浏览:991