‘壹’ 关于部署的一些经典算法
根据部署方式的不同,节点部署算法可分可为 确定性部署 和 随机性部署 两大类。确定性部署通常应用于环境友好或网络状态较为稳定的应用中,传感器节点根据应用需求被置于经过计算和安排后所确定的位置上,通过将节点部署问题抽象为数学问题中的线性规划问题,以网络性能或成本最优化为目标而提出解决方案[19];而随机部署则较为适用于环境恶劣或人工无法到达的监控环境中,传感器节点通常以抛洒的方式随机分布在目标区域内,节点位置往往是无法确定的。
确定性部署相比随机部署来说具有较优的网络性能,但在规模较大且应用环境十分恶劣的实际部署应用中,确定饥凳颤性部署往往占用了较高的人力成本和时间成本,而随机部署则充分体现了其简单和高效的优点,但同时,目标区域的覆盖性能却无法得到保证。
确定性部署被广泛应用于水下传感器网络。针对水下三维环境的节点部署问题,Pori等人提出了从二维空间到三维空间部署策略的适应性算法,文献[20]围绕着三维空间内的节点部署问题和规划,提出了一系列有效构建三维网络拓扑结构的规则,通过转换为二维问题来实现三维空间的节点部署问题。
在文献[21]中,作者通过计算得出网格部署模型下,满足基本网络覆盖和连通所需要烂败的活动节点数目,该算法为节点部署提供了理论基础,缺点是该方法只可适用于二维环境下的节点部署,无法满足水下无线传感器网络这种具有三维特性的应用需求。
最大平均覆盖算法(MAX_AVG_COV) 与 最大最小覆盖算法(MAX_MIN_COV) [22]的提出是基于网格部署模型,通过贪心算法策略进行节点部署,根据前驱节点的位置信息,决定下一个节点的布置位置。两种算法都旨在实现最佳网络覆盖,最大平均覆盖算法(MAX_AVG_COV)的目标是最大化网格点的平均覆盖效果,算法考虑的是整体网络的覆盖效果;而最大最小覆盖算法(MAX_MIN_COV)的目标是使得网络中覆盖效果较差的网格点的覆盖效果最大化,算法从优先改善网络局部性能的角度出发,优先把传感器放在性能最差的点上。两种算法用于概率感知模型,节点对目标事件的感知概率随着目标事件与节点间距离而变化,算法未能充分考虑冗余覆盖的问题,使得网络性能未能达到最佳表现,同时,两种算法复杂都较高,为 O(n^4)。
在文献[22]的基础上,蔺智挺等学者提出了一种整体-局部增进算法[23],该算法的特点是网络初始化后,算法迭代运行,粗行并且每次运行都放置一个传感器到传感器区域中,直到目标区域内所有点都满足覆盖要求或是已配置的传感器数目已达到能配置的传感器的数目的极限时才停止。在每次迭代过程中,算法寻找使网络整体有效覆盖性能改变最大的点,剔除局部冗余,提升了网络的整体性能。
当目标区域的环境十分恶劣时,比如战争区域、灾害防御地区、或是人类无法靠近的深海等,又或者在进行大规模的网络部署时,节点数目巨大,分布密集,这样的条件下采用确定性部署方式进行网络部署是不实际的甚至不可行的,此时,唯一可采用的方式是利用飞机、大炮等工具将节点以随机方式抛洒至目标区域,节点自组织成网络。
2001 年,作者 González-Banos 在文献[24]中提出了一种基于艺术画廊看守问题的随机部署策略,根据密度公式将传感器节点的位置以极坐标的表示方式建立了一种 R-random 的部署模型,它使用 R 来表示传感器节点与汇聚基站的距离。由于艺术画廊看守问题旨在解决有限边界内的最少覆盖问题,因此该文献在容错方面具有较好的性能,仿真实验表明了 R-random部署节点提升了整个传感器网络的可靠性。由于网络都采用多跳方式传输数据,因此越靠近基站的节点其能耗则越大,所以需在基站周围部署密度较大的节点以实现大量冗余节点,替代那些因能耗殆尽而死亡的节点,以此提升网络生存期,并保障数据的连通性。
在文献[25]中,作者提出了一种加权的节点随机配置算法,解决了在不同的区域内节点耗能速率不同的问题,也就是增加中继节点密度,使更多的中继节点分担负载,这样可以延长网络的平均生命周期。但改算法将大量的中继节点部署于距离基站较远的位置,因此网络的连通性将会受到影响。
虽然采用随机部署方式从某种程度上可提高部署效率并减少人工成本,但节点在网络中的相对坐标无法确定,因而这种部署方式无法保证目标区域具有良好的覆盖效果。因此在确定性部署与随机部署二者之间的选择上,Zhang H [26]围绕着确定性部署与随机部署两种方式究竟孰优孰劣的问题,分析并研究了实现一定程度的覆盖度所需的节点数目,作者分别考查了泊松分布、均匀随机分布、网格分布三种部署策略下维护网络 K 覆盖所需的节点密度,文章最后指出,采用网格部署方式所需的节点密度小于另外两种随机部署策略所需的节点密度,证明了网格部署策略在同等条件下所需的节点数目要优于随机部署策略。
在第二章,我们论述了部署方案的评价指标分别有良好的区域覆盖能力、数据信息的可达性和较长的网络生存期。本节将针对部署算法的这三个评价指标的优化对象的不同,从基于覆盖的部署、基于网络连通的部署和基于能量有效性的部署三个类别来对现有算法研究成果进行论述。
实现目标区域的覆盖面积最大化是无线传感器网络部署问题的基本目标,因此区域覆盖也已经成为了许多学者研究的出发点。针对目前 WSNs 应用中经济成本和客观环境的限制,在文献[27]中,作者研究了随机部署方式下有限无线传感器网络在目标区域内的覆盖概率的最大值和最小值,并提出了线性网络环境下实现最大覆盖概率的部署策略,但该部署策略仅适用于线性网络下对移动目标的监测环境。文献[28]将区域覆盖问题划分为面积覆盖、点覆盖和栅栏覆盖问题三大类并分别进行了阐述,面积覆盖问题主要研究的是如何实现覆盖面积最大化的问题;点覆盖旨在考查实现网络中个别目标的覆盖问题;栅栏覆盖的研究目标是如何降
低未知入侵发生的概率,它涉及运动检测。
文献[29]使用网格方法来进行覆盖率的计算,覆盖率的估算通过目标区域中被节点所覆盖的网格数与目标区域的网格总数量之比实现,目标区域所划分的网格数目决定了覆盖率的计算复杂度和结果的精确度,网格被划分得越细,最后计算所得的覆盖率其精确度越高,当然计算过程的开销也更大,如图 3.1 所示,同样 6 个节点,网格划分为 4×4 时所计算得出的覆盖率为 100%,而划分为 8×8 时所得的覆盖率为 98%。
文献[10]针对水下无线传感器网络的应用特性,提出一种节点可自我进行深度调节的算法,节点通过深度调节机制调整其在水下的深度,以实现水下三维环境覆盖率的最大化。初始阶段被部署与水底环境的各个传感器节点通过各自的 ID 号选取簇首节点,簇首节点负责通知该簇内其他节点的调节深度,通过判断节点间是否存在覆盖重叠区域来对节点进行分组管理,存在覆盖重叠的节点彼此分至不同的组号中,组号决定了节点将来被分配至水中的深度;待分组结束后,节点根据自己所在的组号移至水中相应的深度。该算法假设节点在水下环境只具备垂直方向上的移动性,由于簇首担当了对簇内其他成员节点转发管理指令的职责,因而造成了簇首节点的能耗将大于成员节点,而簇首节点的选举在只可在网络初始阶段即节点处于水底二维环境下进行,若簇首节点的死亡将造成整个簇内成员节点的瘫痪。
良好的网络连通性能够保证传感节点所采集到的信息准确及时的传递到使用终端。目前的研究文献中,关于网络连通性的问题多是在实现覆盖的前提下,通过增大节点通信半径来实现的,例如当 RT是 RS的比例 r>1 时,只需实现良好的网络覆盖,节点之间的连通性就能得到保障。然而,在节点通信能力相比感知能力较差的情况下,例如 RT=RS的情况下,网络的连通性能则无法得到保障。
文献[15]围绕着多连通问题展开研究,结合三维空间部署特性和对点阵模式的研究,提出了三维空间下实现 1-连通、2-连通 3-连通、4-连通的部署模型。文章所提的部署模型基于点阵模式,通过对相应模型中节点的通信半径和感知半径之间关系的研究,考查节点部署位置对网络中 K 连通效果的影响,该文所提出的最优模型实际是以 RT/RS比例为前提,在相应的RT/RS比例关系下,对应相应的模型,其最优性限制于节点通信半径与感知半径间的比例关系。
节点的分布密度和其在网络中所处的位置通常会直接影响到整体网络的生命周期,在节点分布过于密集的情况下,数据通信链路容易出现拥塞,使得网络传输负载失衡,从而造成通信负载瓶颈;另外,由于网络多采用多跳方式进行数据转发,因此在节点均匀分布的情况下,靠近基站的节点的能量耗损速度相对较快,从而造成整个网络的能量瓶颈问题。
文献[30]研究了具有最大生存期节点的部署问题。作者提出一种模型使得每个节点可以周期性地向基站发送数据报告。将每个周期数据采集所需的能耗作为衡量网络生命周期长短的标准,作者把问题转化为通过平衡节点负载,最小化每个节点每轮的平均能耗。文章假设网络采用大量的传感节点来传送探测数据,并且谨慎的选择后继节点使得数据传送所需的总能量最小。一种有效的算法是重新部署节点,从而形成最有效的拓扑结构。节点按其接近兴趣点的程度,被按降序挑选出来,算法在所有的传感器节点之间迭代,在每一步迭代中,传感器节点检查自己是否能作为后继节点传输数据。新地址的选择是基于运输流量,实际上,节点的重新部署是通过接近下游邻节点的方式以降低能量消耗。只有在网络的覆盖性不受影响的情况下,才允许重新部署传感器节点[31]。
在文献[32]中,节点在“休眠”-“活跃”两种状态间转换,在满足应用需求的前提下,非必要节点进入休眠状态,而其余节点继续保持活跃状态继续为网络服务;若因节点能量耗尽而退出网络,或应用需求的改变使得当前活跃节点数量无法满足应用需求,休眠节点进入活动状态。作者提出了一种可根据网络状态对节点进行动态管理的协议,以实现应用所规定的覆盖率和连通度目标,并对节点状态进行管理。通过几何关系的研究,考查覆盖率和连通率间的关系,并结合 SPAN 协议为网络覆盖率和连通率提供保障。
文献[33]研究了节点密度对网络生命期的影响,作者从部署角度考虑,分析得出网络生命期的解析公式。并通过研究发现网络生命期并非随节点数量的增加而成比例的增长,因此需要仔细筛选一定数量的节点来平衡网络的成本。考虑到当第一个节点死亡时网络就会中断,作者将问题转化为确定节点的数目并确定它们的位置来保持网络长时间运行。最后提出了两步的解决方案。首先,固定传感器节点的数量,通过多变量非线性问题来解决网络的优化部署,使其达到最长的网络生命期;然后,减少传感器节点数量同时实现最长网络生命期。该文献以固定传感器节点数目为前提,考察节点在网络中的位置,以形成生命期最长的网络拓扑结[31]。
静态网络的运行模式通常是通过预先设定的路由线路传递数据,在进行节点部署工作之前,首先根据应用特性和节点在网络中所发挥的作用来确定其在网络中所处的位置,待部署方案确定之后,方案将独立于网络的状态并且贯穿于整个网络生命周期内。在目前的应用中,可将节点按功能大致地分为四类:传感节点、中继节点、簇首节点和基站节点(汇聚节点)。
静态部署算法的缺点仅在网络初始阶段进行节点位置预判断,而节点的最佳位置的评估往往与网络的数据传输率、节点的感知能力、数据路径距离大小等因素息息相关,静态部署方式往往不考虑节点部署后的移动情况,因此无法根据应用需求对网络部署进行修补以改善网络性能。
文献[34]对异构网络下的节点进行确定性部署分析,采用分簇下的节点部署方案,网络中存在两种节点,一种是普通节点(Regular Sensor Nodes, R-SN),这类节点受通信、存储能量和计算方面的限制。另一类是高端复杂节点(High-endsophisticated sensor nodes,H-SN),即簇头节点,这类节点具有充分的资源。
在某些情况下网络状态是变化的,例如当新节点的加入或某节点能量耗尽时,网络拓扑结构和网络生存期会相应地发生变化,而静态部署策略并未能考虑到网络运行的这些动态变化,因此,为了适应网络的这种变化以实现网络性能的优化,需考虑采用动态方式。
在文献[35]中,节点具有移动性,待部署于目标区域后,各节点利用各自的排斥力朝着与邻节点相反的方向移动直至节点所受的来自各方向的排斥力达到平衡,因而这种方法减少了节点间的覆盖重叠区域。然而这也必然增加了节点的能耗,同时,该文献并未考虑网络的连通性。2005 年,作者 Howard 在文献[35]的基础上延伸了对网络连通率的研究[36],考查节点通信范围内的邻居节点数目并以节点间的吸引力来保证网络的连通性能。文献[35,36]算法的优点是执行起来简单易行,无须对环境进行预处理,且算法具有较强的鲁棒性,适用于大规模的节点部署应用;缺点是网络过于依赖节点的移动性,节点的能耗将是一个十分严重的问题。
类似地,Zou 和 Chakrabarty 学者所提出的 VFA 算法也是基于节点移动功能模块的增加[37],然而不同于文献[35]采用的一次性对节点进行移动,VFA 首先进行移动的模拟仿真,在确定移动后节点所处的位置后,节点一次性地移至该点,节点间移动距离的计算通过簇首节点完成,节点不单具有排斥力,还具有相互间的吸引力,在节点间距过密是通过排斥力扩大覆盖面积;当节点间距过疏时通过吸引力减少覆盖漏洞。该算法简单易用,可实现目标区域快速覆盖,部署效率较高,算法复杂度根据节点数目和目标区域面积变化,在划分为 n×m个网格的给定区域内部署 k 各节点的算法复杂度为 O(nmk)。
文献[9]引入一种新的传感器网络结构,提出了基于表面随机配置的水下无线传感器网络节点部署方法:在进行网络初始配置时,在水平面上随机布置一定数量的节点,然后根据每个节点调整空间内的邻居节点深度安排其自身深度,尽可能使水下三维空间得到充分的覆盖。
‘贰’ 无线传感器网络面临的挑战有哪些
无线通信和低功耗嵌入式技术的飞速发展,孕育出无线传感器网络(Wireless Sensor Networks, WSN),并以其低功耗、低成本、分布式和自组织的特点带来了信息感知的一场变革,无线传感器网络是由部署在监测区域内大量的廉价微型传感器节点,通过无线通信方式形成的一个多跳自组织网络。
信息安全
很显然,现有的传感节点具有很大的安全漏洞,攻击者通过此漏洞,可方便地获取传感节点中的机密信息、修改传感节点中的程序代码,如使得传感节点具有多个身份ID,从而以多个身份在传感器网络中进行通信,另外,攻击还可以通过获取存储在传感节点中的密钥、代码等信息进行,从而伪造或伪装成合法节点加入到传感网络中。一旦控制了传感器网络中的一部分节点后,攻击者就可以发动很多种攻击,如监听传感器网络中传输的信息,向传感器网络中发布假的路由信息或传送假的传感信息、进行拒绝服务攻击等。
对策:由于传感节点容易被物理操纵是传感器网络不可回避的安全问题,必须通过其它的技术方案来提高传感器网络的安全性能。如在通信前进行节点与节点的身份认证;设计新的密钥协商方案,使得即使有一小部分节点被操纵后,攻击者也不能或很难从获取的节点信息推导出其它节点的密钥信息等。另外,还可以通过对传感节点软件的合法性进行认证等措施来提高节点本身的安全性能。
根据无线传播和网络部署特点,攻击者很容易通过节点间的传输而获得敏感或者私有的信息,如:在使用WSN监控室内温度和灯光的场景中,部署在室外的无线接收器可以获取室内传感器发送过来的温度和灯光信息;同样攻击者通过监听室内和室外节点间信息的传输,也可以获知室内信息,从而非法获取出房屋主人的生活习惯等私密信息。[6]
对策:对传输信息加密可以解决窃听问题,但需要一个灵活、强健的密钥交换和管理方案,密钥管理方案必须容易部署而且适合传感节点资源有限的特点,另外,密钥管理方案还必须保证当部分节点被操纵后(这样,攻击者就可以获取存储在这个节点中的生成会话密钥的信息),不会破坏整个网络的安全性。由于传感节点的内存资源有限,使得在传感器网络中实现大多数节点间端到端安全不切实际。然而在传感器网络中可以实现跳-跳之间的信息的加密,这样传感节点只要与邻居节点共享密钥就可以了。在这种情况下,即使攻击者捕获了一个通信节点,也只是影响相邻节点间的安全。但当攻击者通过操纵节点发送虚假路由消息,就会影响整个网络的路由拓扑。解决这种问题的办法是具有鲁棒性的路由协议,另外一种方法是多路径路由,通过多个路径传输部分信息,并在目的地进行重组。
传感器网络是用于收集信息作为主要目的的,攻击者可以通过窃听、加入伪造的非法节点等方式获取这些敏感信息,如果攻击者知道怎样从多路信息中获取有限信息的相关算法,那么攻击者就可以通过大量获取的信息导出有效信息。一般传感器中的私有性问题,并不是通过传感器网络去获取不大可能收集到的信息,而是攻击者通过远程监听WSN,从而获得大量的信息,并根据特定算法分析出其中的私有性问题。因此攻击者并不需要物理接触传感节点,是一种低风险、匿名的获得私有信息方式。远程监听还可以使单个攻击者同时获取多个节点的传输的信息。
对策:保证网络中的传感信息只有可信实体才可以访问是保证私有性问题的最好方法,这可通过数据加密和访问控制来实现;另外一种方法是限制网络所发送信息的粒度,因为信息越详细,越有可能泄露私有性,比如,一个簇节点可以通过对从相邻节点接收到的大量信息进行汇集处理,并只传送处理结果,从而达到数据匿名化。
拒绝服务攻击(DoS)
专门的拓扑维护技术研究还比较少,但相关研究结果表明优化的拓扑维护能有效地节省能量并延长网络生命周期,同时保持网络的基本属性覆盖或连通。本节中,根据拓扑维护决策器所选维护策略
在无线传感器网络的研究中,能效问题一直是热点问题。当前的处理器以及无线传输装置依然存在向微型化发展的空间,但在无线网络中需要数量更多的传感器,种类也要求多样化,将它们进行链接,这样会导致耗电量的加大。如何提高网络性能,延长其使用寿命,将不准确性误差控制在最小将是下一步研究的问题。
采集与管理数据
在今后,无线传感器网络接收的数据量将会越来越大,但是当前的使用模式对于数量庞大的数据的管理和使用能力有限。如何进一步加快其时空数据处理和管理的能力,开发出新的模式将是非常有必要的。
无线通讯的标准问题
标准的不统一会给无线传感器网络的发展带来障碍,在接下来的发展中,要开发出无线通讯标准。
‘叁’ 无线传感器网络中连通与覆盖的关系与区别是什么
“连通与覆盖是无线传感器网络的两个最基本的问题.无线传感器网络的连通指的是任意两个节点之间都能够李缓进行通信,这是节点自组织形成网络的前提.覆盖是指通过所有节点能够对整个目标区域进行监测,从而达到信息采集的胡橘目的.连通裤扰团与覆盖不仅决定了一个无线传感器网络能否正常工作,还在很大程度上影响着整个网络的能耗,生存时间和服务质量等重要参数.因此,对无线传感器网络连通与覆盖的研究具有积极的理论意义和广泛的应用价值。”
‘肆’ 无线传感器网络中的部署问题,200分!!追加!!
无线传感器网络是近几年发展起来的一种新兴技术,在条件恶劣和无人坚守的环境监测和事件跟踪中显示了很大的应用价值。节点部署是无线传感器网络工作的基础,对网络的运行情况和寿命有很大的影响。部署问题涉及覆盖、连接和节约能量消耗3个方面。该文重点讨论了网络部署中的覆盖问题,综述了现有的研究成果,总结了今后的热点研究方向,为以后的研究奠定了基础。
基于虚拟势场的有向传感器网络覆盖增强算法
摘 要: 首先从视频传感器节点方向性感知特性出发,设计了一种方向可调感知模型,并以此为基础对有向传感器网络覆盖增强问题进行分析与定义;其次,提出了一种基于虚拟势场的有向传感器网络覆盖增强算法PFCEA (potential field based coverage-enhancing algorithm).通过引入“质心”概念,将有向传感器网络覆盖增强问题转化为质心均匀分布问题,以质心点作圆周运动代替传感器节点传感方向的转动.质心在虚拟力作用下作扩散运动,以消除网络中感知重叠区和盲区,进而增强整个有向传感器网络覆盖.一系列仿真实验验证了该算法的有效性.
关键词: 有向传感器网络;有向感知模型;虚拟势场;覆盖增强
中图法分类号: TP393 文献标识码: A
覆盖作为传感器网络中的一个基本问题,反映了传感器网络所能提供的“感知”服务质量.优化传感器网络覆盖对于合理分配网络的空间资源,更好地完成环境感知、信息获取任务以及提高网络生存能力都具有重要的意义[1].目前,传感器网络的初期部署有两种策略:一种是大规模的随机部署;另一种是针对特定的用途进行计划部署.由于传感器网络通常工作在复杂的环境下,而且网络中传感器节点众多,因此大都采用随机部署方式.然而,这种大规模随机投放方式很难一次性地将数目众多的传感器节点放置在适合的位置,极容易造成传感器网络覆盖的不合理(比如,局部目标区域传感器节点分布过密或过疏),进而形成感知重叠区和盲区.因此,在传感器网络初始部署后,我们需要采用覆盖增强策略以获得理想的网络覆盖性能.
目前,国内外学者相继开展了相关覆盖增强问题的研究,并取得了一定的进展[25].从目前可获取的资料来看,绝大多数覆盖问题研究都是针对基于全向感知模型(omni-directional sensing model)的传感器网络展开的[6],
即网络中节点的感知范围是一个以节点为圆心、以其感知距离为半径的圆形区域.通常采用休眠冗余节点[2,7]、
重新调整节点分布[811]或添加新节点[11]等方法实现传感器网络覆盖增强.
实际上,有向感知模型(directional sensing model)也是传感器网络中的一种典型的感知模型[12],即节点的感知范围是一个以节点为圆心、半径为其感知距离的扇形区域.由基于有向感知模型的传感器节点所构成的网络称为有向传感器网络.视频传感器网络是有向传感器网络的一个典型实例.感知模型的差异造成了现有基于全向感知模型的覆盖研究成果不能直接应用于有向传感器网络,迫切需要设计出一系列新方法.
在早期的工作中[13],我们率先开展有向传感器网络中覆盖问题的研究,设计一种基本的有向感知模型,用以刻画视频传感器节点的方向性感知特性,并研究有向传感器网络覆盖完整性以及通信连通性问题.同时,考虑到有向传感器节点传感方向往往具有可调整特性(比如PTZ摄像头的推拉摇移功能),我们进一步提出一种基于图论和计算几何的集中式覆盖增强算法[14],调整方案一经确定,网络中所有有向传感器节点并发地进行传感方向的一次性调整,以此获得网络覆盖性能的增强.但由于未能充分考虑到有向传感器节点局部位置及传感方向信息,因而,该算法对有向传感器网络覆盖增强的能力相对有限.
本文将基本的有向感知模型扩展为方向可调感知模型,研究有向传感器网络覆盖增强问题.首先定义了方向可调感知模型,并分析随机部署策略对有向传感器网络覆盖率的影响.在此基础上,分析了有向传感器网络覆盖增强问题.本文通过引入“质心”概念,将待解决问题转化为质心均匀分布问题,提出了一种基于虚拟势场的有向传感器网络覆盖增强算法PFCEA(potential field based coverage-enhancing algorithm).质心在虚拟力作用下作扩散运动,逐步消除网络中感知重叠区和盲区,增强整个网络覆盖性能.最后,一系列仿真实验验证了PFCEA算法的有效性.
1 有向传感器网络覆盖增强问题
本节旨在分析和定义有向传感器网络覆盖增强问题.在此之前,我们对方向可调感知模型进行简要介绍.
1.1 方向可调感知模型
不同于目前已有的全向感知模型,方向可调感知模型的感知区域受“视角”的限制,并非一个完整的圆形区域.在某时刻t,有向传感器节点具有方向性感知特性;随着其传感方向的不断调整(即旋转),有向传感器节点有能力覆盖到其传感距离内的所有圆形区域.由此,通过简单的几何抽象,我们可以得到有向传感器节点的方向可调感知模型,如图1所示.
定义1. 方向可调感知模型可用一个四元组P,R, ,
表示.其中,P=(x,y)表示有向传感器节点的位置坐标;R表示节
点的最大传感范围,即传感半径;单位向量 = 为扇形感知区域的中轴线,即节点在某时刻t时的传感方向; 和 分别是单位向量 在X轴和Y轴方向上的投影分量;表示边界距离传感向量 的传感夹角,2代表传感区域视角,记作FOV.
特别地,当=时,传统的全向感知模型是方向可调感知模型的一个特例.
若点P1被有向传感器节点vi覆盖成立,记为viP1,当且仅当满足以下条件:
(1) ,其中, 代表点P1到该节点的欧氏距离;
(2) 与 间夹角取值属于[,].
判别点P1是否被有向传感器节点覆盖的一个简单方法是:如果 且 ,那么,点P1
被有向传感器节点覆盖;否则,覆盖不成立.另外,若区域A被有向传感节点覆盖,当且仅当区域A中任何一个点都被有向传感节点覆盖.除非特别说明,下文中出现的“节点”和“传感器节点”均满足上述方向可调感知模型.
1.2 有向传感器网络覆盖增强问题的分析与定义
在研究本文内容之前,我们需要作以下必要假设:
A1. 有向传感器网络中所有节点同构,即所有节点的传感半径(R)、传感夹角()参数规格分别相同;
A2. 有向传感器网络中所有节点一经部署,则位置固定不变,但其传感方向可调;
A3. 有向传感器网络中各节点都了解自身位置及传感方向信息,且各节点对自身传感方向可控.
假设目标区域的面积为S,随机部署的传感器节点位置满足均匀分布模型,且目标区域内任意两个传感器节点不在同一位置.传感器节点的传感方向在[0,2]上也满足均匀分布模型.在不考虑传感器节点可能落入边界区域造成有效覆盖区域减小的情况下,由于每个传感器节点所监控的区域面积为R2,则每个传感器节点能监测整个目标区域的概率为R2/S.目标区域被N个传感器节点覆盖的初始概率p0的计算公式为(具体推导过程参见文献[14])
(1)
由公式(1)可知,当目标区域内网络覆盖率至少达到p0时,需要部署的节点规模计算公式为
(2)
当网络覆盖率分别为p0和p0+p时,所需部署的传感器节点数目分别为ln(1p0)/,ln(1(p0+p))/.其中, =ln(SR2)lnS.因此,传感器节点数目差异N由公式(3)可得,
(3)
当目标区域面积S、节点传感半径R和传感夹角一定时,为一常数.此时,N与p0,p满足关系如图2所示(S=500500m2,R=60m,=45º).从图中我们可以看出,当p0一定时,N随着p的增加而增加;当p一定时,N随着p0的增加而增加,且增加率越来越大.因此,当需要将覆盖率增大p时,则需多部署N个节点(p0取值较大时(80%),p取值每增加1%,N就有数十、甚至数百的增加).如果采用一定的覆盖增强策略,无须多部署节点,就可以使网络覆盖率达到p0+p,大量节省了传感器网络部署成本.
设Si(t)表示节点vi在传感向量为 时所覆盖的区域面积.运算操作Si(t)Sj(t)代表节点vi和节点vj所能覆盖到的区域总面积.这样,当网络中节点传感向量取值为 时,有向传感器网络覆盖率可表
示如下:
(4)
因此,有向传感器网络覆盖增强问题归纳如下:
问题:求解一组 ,使得对于初始的 ,有 取值
接近最大.
Fig.2 The relation among p0, p and N
图2 p0,p和N三者之间的关系
2 基于虚拟势场的覆盖增强算法
2.1 传统虚拟势场方法
虚拟势场(virtual potential field)的概念最初应用于机器人的路径规划和障碍躲避.Howard等人[8]和Pori等人[9]先后将这一概念引入到传感器网络的覆盖增强问题中来.其基本思想是把网络中每个传感器节点看作一个虚拟的电荷,各节点受到其他节点的虚拟力作用,向目标区域中的其他区域扩散,最终达到平衡状态,即实现目标区域的充分覆盖状态.Zou等人[15]提出了一种虚拟力算法(virtual force algorithm,简称VFA),初始节点随机部署后自动完善网络覆盖性能,以均匀网络覆盖并保证网络覆盖范围最大化.在执行过程中,传感器节点并不移动,而是计算出随机部署的传感器节点虚拟移动轨迹.一旦传感器节点位置确定后,则对相应节点进行一次移动操作.Li等人[10]为解决传感器网络布局优化,在文献[15]的基础上提出了涉及目标的虚拟力算法(target involved virtual force algorithm,简称TIVFA),通过计算节点与目标、热点区域、障碍物和其他传感器之间的虚拟力,为各节点寻找受力平衡点,并将其作为该传感器节点的新位置.
上述利用虚拟势场方法优化传感器网络覆盖的研究成果都是基于全向感知模型展开的.假定传感器节点间存在两种虚拟力作用:一种是斥力,使传感器节点足够稀疏,避免节点过于密集而形成感知重叠区域;另一种是引力,使传感器节点保持一定的分布密度,避免节点过于分离而形成感知盲区[15].最终利用传感器节点的位置移动来实现传感器网络覆盖增强.
2.2 基于虚拟势场的有向传感器网络覆盖增强算法
在实际应用中,考虑到传感器网络部署成本,所有部署的传感器节点都具有移动能力是不现实的.另外,传感器节点位置的移动极易引起部分传感器节点的失效,进而造成整个传感器网络拓扑发生变化.这些无疑都会增加网络维护成本.因而,本文的研究工作基于传感器节点位置不变、传感方向可调的假设.上述假设使得直接利用虚拟势场方法解决有向传感器网络覆盖增强问题遇到了麻烦.在传统的虚拟势场方法中,传感器节点在势场力的作用下进行平动(如图3(a)所示),而基于本文的假设,传感器节点表现为其扇形感知区域在势场力的作用下以传感器节点为轴心进行旋转(如图3(b)所示).
为了简化扇形感知区域的转动模型,我们引入“质心(centroid)”的概念.质心是质点系中一个特定的点,它与物体的平衡、运动以及内力分布密切相关.传感器节点的位置不变,其传感方向的不断调整可近似地看作是扇形感知区域的质心点绕传感器节点作圆周运动.如图3(b)所示,一个均匀扇形感知区域的质心点位于其对称轴上且与圆心距离为2Rsin/3.每个传感器节点有且仅有一个质心点与其对应.我们用c表示传感器节点v所对应的质心点.本文将有向传感器网络覆盖增强问题转化为利用传统虚拟势场方法可解的质心点均匀分布问题,如图4所示.
Fig.3 Moving models of sensor node
图3 传感器节点的运动模型
Fig.4 The issue description of coverage enhancement in directional sensor networks
图4 有向传感器网络覆盖增强问题描述
2.2.1 受力分析
利用虚拟势场方法增强有向传感器网络覆盖,可以近似等价于质心点-质心点(c-c)之间虚拟力作用问题.我们假设质心点-质心点之间存在斥力,在斥力作用下,相邻质心点逐步扩散开来,在降低冗余覆盖的同时,逐渐实现整个监测区域的充分高效覆盖,最终增强有向传感器网络的覆盖性能.在虚拟势场作用下,质心点受来自相邻一个或多个质心点的斥力作用.下面给出质心点受力的计算方法.
如图5所示,dij表示传感器节点vi与vj之间的欧氏距离.只有当dij小于传感器节点传感半径(R)的2倍时,它们的感知区域才存在重叠的可能,故它们之间才存在产生斥力的作用,该斥力作用于传感器节点相应的质心点ci和cj上.
定义2. 有向传感器网络中,欧氏距离不大于节点传感半径(R)2倍的一对节点互为邻居节点.节点vi的邻居节点集合记作i.即i={vj|Dis(vi,vj)2R,ij}.
我们定义质心点vj对质心点vi的斥力模型 ,见公式(5).
(5)
其中,Dij表示质心点ci和cj之间的欧氏距离;kR表示斥力系数(常数,本文取kR=1);ij为单位向量,指示斥力方向(由质心点cj指向ci).公式(5)表明,只有当传感器节点vi和vj互为邻居节点时(即有可能形成冗余覆盖时),其相应的质心点ci和cj之间才存在斥力作用.质心点所受斥力大小与ci和cj之间的欧氏距离成反比,而质心点所受斥力方向由ci和cj之间的相互位置关系所决定.
质心点ci所受合力是其受到相邻k个质心点排斥力的矢量和.公式(6)描述质心点ci所受合力模型 .
(6)
通过如图6所示的实例,我们分析质心点的受力情况.图中包括4个传感器节点:v1,v2,v3和v4,其相应的质心
点分别为c1,c2,c3和c4.以质心点c1为例,由于d122R,故 ,质心点c1仅受到来自质心点c3和c4的斥力,其所受合力 .传感器节点传感方向旋转导致质心点的运动轨迹并不是任意的,而是固定绕传感器节点作圆周运动.因此,质心点的运动仅仅受合力沿圆周切线方向分量 的影响.
Fig.6 The force on centroid
图6 质心点受力
2.2.2 控制规则(control law)
本文基于一个虚拟物理世界研究质心点运动问题,其中作用力、质心点等都是虚拟的.该虚拟物理世界的构建是建立在求解问题特征的基础上的.在此,我们定义控制规则,即规定质心点受力与运动之间的关系,以达到质心点的均匀分布.
质心点在 作用下运动,受到运动学和动力学的双重约束,具体表现如下:
(1) 运动学约束
在传统传感器网络中利用虚拟势场方法移动传感器节点的情况下,由于传感器节点向任意方向运动的概率是等同的,我们大都忽略其所受的运动学约束[8].而在转动模型中,质心点的运动不是任意方向的,受合力沿圆
周切线方向分量 的影响,只能绕其传感器节点作圆周运动.
质心点在运动过程中受到的虚拟力是变化的,但对传感器网络系统来说,传感器节点之间每时每刻都交换邻居节点位置及传感方向信息是不现实的.因此,我们设定邻居节点间每隔时间步长t交换一次位置及传感方向信息,根据交换信息计算当前时间步长质心点所受合力,得出转动方向及弧长.同时,问题求解的目的在于将节点的传感方向调整至一个合适的位置.在此,我们不考虑速度和加速度与转动弧长之间的关系.
(2) 动力学约束
动力学约束研究受力与运动之间的关系.本运动模型中的动力学约束主要包含两方面内容:
• 每个时间步长t内,质心点所受合力与转动方向及弧长之间的关系;
• 质心点运动的静止条件.
在传统传感器网络中利用虚拟势场方法移动传感器节点的情况下,在每个时间步长内,传感器节点的运动速度受限于最大运动速度vmax,而不是随传感器节点受力无止境地增加.通过此举保证微调方法的快速收敛.在本转动模型中,我们同样假设质心点每次固定以较小的转动角度进行转动,通过多次微调方法逐步趋向最优解,即在每个时间步长t内,质心点转动的方向沿所受合力在圆周切线方向分量,转动大小不是任意的,而是具有固定转动角度.采用上述方法的原因有两个:
• 运动过程中,质心点受力不断变化,且变化规律很难用简单的函数进行表示,加之上述运动学约束和问题特征等因素影响,我们很难得出一个简明而合理的质心点所受合力与转动弧长之间的关系.
• 运动过程中,质心点按固定角度进行转动,有利于简化计算过程,减少节点的计算负担.同时,我们通过分析仿真实验数据发现,该方法具有较为理想的收敛性(具体讨论参见第3.2节).
固定转动角度取值不同对PFCEA算法性能具有较大的影响,这在第3.3节中将加以详细的分析和说明.
当质心点所受合力沿圆周切线方向分量为0时,其到达理想位置转动停止.如图7所示,我们假定质心点在圆周上O点处合力切向分量为0.由于质心点按固定转动角度进行转动,因此,它
未必会刚好转动到O点处.当质心点处于图7中弧 或 时,会
因合力切向分量不为0而导致质心点围绕O点附近往复振动.因此,为避免出现振动现象,加速质心点达到稳定状态,我们需要进一步限定质心点运动的停止条件.
当质心点围绕O点附近往复振动时,其受合力的切向分量很
小.因此,我们设定受力门限,当 (本文取=10e6),即可认
定质心点已达到稳定状态,无须再运动.经过数个时间步长t后,当网络中所有质心点达到稳定状态时,整个传感器网络即达到稳定状态,此时对应的一组 ,该
组解通常为本文覆盖增强的较优解.
2.3 算法描述
基于上述分析,本文提出了基于虚拟势场的网络覆盖增强算法(PFCEA),该算法是一个分布式算法,在每个传感器节点上并发执行.PFCEA算法描述如下:
输入:节点vi及其邻居节点的位置和传感方向信息.
输出:节点vi最终的传感方向信息 .
1. t0; //初始化时间步长计数器
2. 计算节点vi相应质心点ci初始位置 ;
3. 计算节点vi邻居节点集合i,M表示邻居节点集合中元素数目;
4. While (1)
4.1 tt+1;
4.2 ;
4.3 For (j=0; j<M; j++)
4.3.1 计算质心点cj对ci的当前斥力 ,其中,vji;
4.3.2 ;
4.4 计算质心点ci当前所受合力 沿圆周切线分量 ;
4.5 确定质心点ci运动方向;
4.6 If ( ) Then
4.6.1 质心点ci沿 方向转动固定角度;
4.6.2 调整质心点ci至新位置 ;
4.6.3 计算节点vj指向当前质心点ci向量并单位化,得到节点vi最终的传感方向信息 ;
4.7 Sleep (t);
5. End.
3 算法仿真与性能分析
我们利用VC6.0自行开发了适用于传感器网络部署及覆盖研究的仿真软件Senetest2.0,并利用该软件进行了大量仿真实验,以验证PFCEA算法的有效性.实验中参数的取值见表1.为简化实验,假设目标区域中所有传感器节点同构,即所有节点的传感半径及传感夹角规格分别相同.
Table 1 Experimental parameters
表1 实验参数
Parameter Variation
Target area S 500500m2
Area coverage p 0~1
Sensor number N 0~250
Sensing radius Rs 0~100m
Sensing offset angel 0º~90º
3.1 实例研究
在本节中,我们通过一个具体实例说明PFCEA算法对有向传感器网络覆盖增强.在500500m2的目标区域内,我们部署传感半径R=60m、传感夹角=45º的传感器节点完成场景监测.若达到预期的网络覆盖率p=70%, 通过公式(1),我们可预先估算出所需部署的传感器节点数目,
.
针对上述实例,我们记录了PFCEA算法运行不同时间步长时有向传感器网络覆盖增强情况,如图8所示.
(a) Initial coverage, p0=65.74%
(a) 初始覆盖,p0=65.74% (b) The 10th time step, p10=76.03%
(b) 第10个时间步长,p10=76.03%
(c) The 20th time step, p20=80.20%
(c) 第20个时间步长,p20=80.20% (d) The 30th time step, p30=81.45%
(d) 第30个时间步长,p30=81.45%
Fig.8 Coverage enhancement using PFCEA algorithm
图8 PFCEA算法实现覆盖增强
直观看来,质心点在虚拟斥力作用下进行扩散运动,逐步消除网络中感知重叠区和盲区,最终实现有向传感器网络覆盖增强.此例中,网络传感器节点分别经过30个时间步长的调整,网络覆盖率由最初的65.74%提高到81.45%,网络覆盖增强达15.71个百分点.
图9显示了逐个时间步长调整所带来的网络覆盖增强.我们发现,随着时间步长的增加,网络覆盖率也不断增加,且近似满足指数关系.当时间步长达到30次以后,网络中绝大多数节点的传感方向出现振动现象,直观表现为网络覆盖率在81.20%附近在允许的范围振荡.此时,我们认定有向传感器网络覆盖性能近似增强至最优.
网络覆盖性能可以显着地降低网络部署成本.实例通过节点传感方向的自调整,在仅仅部署105个传感器节点的情况下,最终获得81.45%的网络覆盖率.若预期的网络覆盖率为81.45%,通过公式(1)的计算可知,我们至少需要部署148个传感器节点.由此可见,利用PFCEA算法实现网络覆盖增强的直接效果是可以节省近43个传感器节点,极大地降低了网络部署成本.
3.2 收敛性分析
为了讨论本文算法的收敛性,我们针对4种不同的网络节点规模进行多组实验.我们针对各网络节点规模随机生成10个拓扑结构,分别计算算法收敛次数,并取平均值,实验数据见表2.其他实验参数为R=60m,=45º, =5º.
Table 2 Experimental data for convergence analysis
表2 实验数据收敛性分析
(%)
(%)
1 50 41.28 52.73 24
2 70 52.74 64.98 21
3 90 60.76 73.24 28
4 110 65.58 78.02 27
分析上述实验数据,我们可以得出,PFCEA算法的收敛性即调整的次数,并不随传感器网络节点规模的变化而发生显着的改变,其取值一般维持在[20,30]范围内.由此可见,本文PFCEA算法具有较好的收敛性,可以在较短的时间步长内完成有向传感器网络的覆盖增强过程.
3.3 仿真分析
在本节中,我们通过一系列仿真实验来说明4个主要参数对本文PFCEA算法性能的影响.它们分别是:节点规模N、传感半径R、传感夹角和(质心点)转动角度.针对前3个参数,我们与以往研究的一种集中式覆盖增强算法[14]进行性能分析和比较.
A. 节点规模N、传感半径R以及传感角度
我们分别取不同节点规模进行仿真实验.从图10(a)变化曲线可以看出,当R和一定时,N取值较小导致网络初始覆盖率较小.此时,随着N的增大,p取值呈现持续上升趋势.当N=200时,网络覆盖率增强可达14.40个百分点.此后,p取值有所下降.这是由于当节点规模N增加导致网络初始覆盖率较高时(如60%),相邻多传感器节点间形成覆盖盲区的概率大为降低,无疑削弱了PFCEA算法的性能.另外,部分传感器节点落入边界区域,也会间接起到削弱PFCEA算法性能的作用.
另外,传感半径、传感角度对PFCEA算法性能的影响与此类似.当节点规模一定时,节点传感半径或传感角度取值越小,单个节点的覆盖区域越小,各相邻节点间形成感知重叠区域的可能性也就越小.此时,PFCEA算法对网络覆盖性能改善并不显着.随着传感半径或传感角度的增加,p不断增加.当R=70m且=45º时,网络覆盖率最高可提升15.91%.但随着传感半径或传感角度取值的不断增加,PFCEA算法带来的网络覆盖效果降低,如图10(b)、图10(c)所示.
(c) The effect of sensing offset angle , other parameters meet N=100, R=40m, =5º
(c) 传感角度的影响,其他实验参数满足:N=100,R=40m,=5º
‘伍’ 无线传感器网络的优缺点
一、优点
(1) 数据机密性
数据机密性是重要的网络安全需求,要求所有敏感信息在存储和传输过程中都要保证其机密性,不得向任何非授权用户泄露信息的内容。
(2)数据完整性
有了机密性保证,攻击者可能无法获取信息的真实内容,但接收者并不能保证其收到的数据是正确的,因为恶意的中间节点可以截获、篡改和干扰信息的传输过程。通过数据完整性鉴别,可以确保数据传输过程中没有任何改变。
(3) 数据新鲜性
数据新鲜性问题是强调每次接收的数据都是发送方最新发送的数据,以此杜绝接收重复的信息。保证数据新鲜性的主要目的是防止重放(Replay)攻击。
二、缺点
根据网络层次的不同,无线传感器网络容易受到的威胁:
(1)物理层:主要的攻击方法为拥塞攻击和物理破坏。
(2)链路层:主要的攻击方法为碰撞攻击、耗尽攻击和非公平竞争。
(3)网络层:主要的攻击方法为丢弃和贪婪破坏、方向误导攻击、黑洞攻击和汇聚节点攻击。
(4)传输层:主要的攻击方法为泛洪攻击和同步破坏攻击。
(5)无线传感器网络覆盖漏洞扩展阅读:
一、相关特点
(1)组建方式自由。
无线网络传感器的组建不受任何外界条件的限制,组建者无论在何时何地,都可以快速地组建起一个功能完善的无线网络传感器网络,组建成功之后的维护管理工作也完全在网络内部进行。
(2)网络拓扑结构的不确定性。
从网络层次的方向来看,无线传感器的网络拓扑结构是变化不定的,例如构成网络拓扑结构的传感器节点可以随时增加或者减少,网络拓扑结构图可以随时被分开或者合并。
(3)控制方式不集中。
虽然无线传感器网络把基站和传感器的节点集中控制了起来,但是各个传感器节点之间的控制方式还是分散式的,路由和主机的功能由网络的终端实现各个主机独立运行,互不干涉,因此无线传感器网络的强度很高,很难被破坏。
(4)安全性不高。
无线传感器网络采用无线方式传递信息,因此传感器节点在传递信息的过程中很容易被外界入侵,从而导致信息的泄露和无线传感器网络的损坏,大部分无线传感器网络的节点都是暴露在外的,这大大降低了无线传感器网络的安全性。
二、组成结构
无线传感器网络主要由三大部分组成,包括节点、传感网络和用户这3部分。其中,节点一般是通过一定方式将节点覆盖在一定的范围,整个范围按照一定要求能够满足监测的范围。
传感网络是最主要的部分,它是将所有的节点信息通过固定的渠道进行收集,然后对这些节点信息进行一定的分析计算,将分析后的结果汇总到一个基站,最后通过卫星通信传输到指定的用户端,从而实现无线传感的要求。
‘陆’ 关于无线传感器网络的安全,你认为未来面临的攻击主要包 含哪些
根据网络层次的不同,可以将无线传感器网络容易受到的威胁分为四类:
1、物理层:主要的攻击方法为拥塞攻击和物理破坏。
2、链路层:主要的攻击方法为碰撞攻击、耗尽攻击和非公平竞争。
3、网络层:主要的攻击方法为丢弃和贪婪破坏、方向误导攻击、黑洞攻击和汇聚节点攻击。
4、传输层:主要的攻击方法为泛洪攻击和同步破坏攻击。
安全需求
由于WSN使用无线通信,其通信链路不像有线网络一样可以做到私密可控。所以在设计传感器网络时,更要充分考虑信息安全问题。
手机SIM卡等智能卡,利用公钥基础设施(Public Key Infrastructure,PKI)机制,基本满足了电信等行业对信息安全的需求。同样,亦可使用PKI来满足WSN在信息安全方面的需求。
1、数据机密性
数据机密性是重要的网络安全需求,要求所有敏感信息在存储和传输过程中都要保证其机密性,不得向任何非授权用户泄露信息的内容。
2、数据完整性
有了机密性保证,攻击者可能无法获取信息的真实内容,但接收者并不能保证其收到的数据是正确的,因为恶意的中间节点可以截获、篡改和干扰信息的传输过程。通过数据完整性鉴别,可以确保数据传输过程中没有任何改变。
3、数据新鲜性
数据新鲜性问题是强调每次接收的数据都是发送方最新发送的数据,以此杜绝接收重复的信息。保证数据新鲜性的主要目的是防止重放(Replay)攻击。
4、可用性
可用性要求传感器网络能够随时按预先设定的工作方式向系统的合法用户提供信息访问服务,但攻击者可以通过伪造和信号干扰等方式使传感器网络处于部分或全部瘫痪状态,破坏系统的可用性,如拒绝服务(Denial of Service,DoS)攻击。
5、鲁棒性
无线传感器网络具有很强的动态性和不确定性,包括网络拓扑的变化、节点的消失或加入、面临各种威胁等,因此,无线传感器网络对各种安全攻击应具有较强的适应性,即使某次攻击行为得逞,该性能也能保障其影响最小化。
6、访问控制
访问控制要求能够对访问无线传感器网络的用户身份进行确认,确保其合法性。
‘柒’ 无线传感器网络上的安全问题几解决方案
无线传感器网络WSN(WirelessSensorNetwork)是一种自组织网络,通过大量低成本、资源受限的传感节点设备协同工作实现某一特定任务。
它是信息感知和采集技术的一场革命,是21世纪最重要的技术之一。它在气候监测,周边环境中的温度、灯光、湿度等情况的探测,大气污染程度的监测,建筑的结构完整性监控,家庭环境的异常情况,机场或体育馆的化学、生物威胁的检测与预报等方面,WSN将会是一个经济的替代方案,有着广泛的应用前景。
传感器网络为在复杂的环境中部署大规模的网络,进行实时数据采集与处理带来了希望。但同时WSN通常部署在无人维护、不可控制的环境中,除了具有一般无线网络所面临的信息泄露、信息篡改、重放攻击、拒绝服务等多种威胁外,WSN还面临传感节点容易被攻击者物理操纵,并获取存储在传感节点中的所有信息,从而控制部分网络的威胁。用户不可能接受并部署一个没有解决好安全和隐私问题的传感网络,因此在进行WSN协议和软件设计时,必须充分考虑WSN可能面临的安全问题,并把安全机制集成到系统设计中去。只有这样,才能促进传感网络的广泛应用,否则,传感网络只能部署在有限、受控的环境中,这和传感网络的最终目标——实现普遍性计算并成为人们生活中的一种重要方式是相违背的。
一种好的安全机制设计是建立在胡空对其所面临的威胁、网络特点等的深刻分析基础之上的,传感网络也不例外,本文将深入分析无线传感器网络特点以及其所可能面临的安全威胁,并对其相应的安全对策进行了研究和探讨。
2.传感器网络特点分析
WSN是一种大规模的分布式网络,常部署于无人维护、条件恶劣的环境当中,且大多数情况下传感节点都是一次性使用,从而决定了传感节点是价格低廉、资源极度受限的无线通信设备[2],它的特点主要体现在以下几个方面:(1)能量有限:能量是限制传感节点能力、寿命的最主要的约束性条件,现有的传感节点都是通过标准的AAA或AA电池进行供电,并且不能重新充电。(2)计算能力有限:传感节点CPU一般只具有8bit、4MHz~8MHz的处理能力。(3)存储能力有限:传感节点一般包括三种形式的存储器即RAM、程序存储器、工作存储器。RAM用于存放工作时的临时数据,一般不超过2k字节;程序存储器誉渗用于存储操作系统、应用程序以及安全函数等,工作存储器用于存放获取的传感信息,这两种存储器一般也只有几十k字节。(4)通信范围有限:为了节约信号传输时的能量消耗,传感节点的RF模块的传输能量一般为10mW到100mW之间,传输的范围也局限于100米到1公里之内。(5)防篡改性:传感节点是一种价格低廉、结构松散、开放的网络设备,攻击者一旦获取传感节点就很容易获得和修改存储在传感节点中的密钥信息以及程序代码等。
另外,大多数传感器网络在进行部署前,其网络拓扑是无法预知的,同时部署后,整个网络拓扑、传感节点在网络中的角色也是经常变化的,因而不像有线网、大部分无线网络那样对网络设备进行完全配置,对传感节点进行预配置的范围是有限的,很多网络参数、密钥等都是传感节点在部署后进行协商后形成的。
根据以上无线传感器特点分析可知,无线传感器网络易于遭受传感节点的物理操纵、传感信息的窃听、拒绝服务攻击、私有信息的泄露等多种威胁和攻击。下面将根据WSN的特点,对WSN所面临的潜在安全威胁进行分类描述与对策探讨。
3.威胁分析与对策
3.1传感节点的物理操纵
未来的传感器网络一般有成百上千个传感节点,很难对每个节点进行监控和保护,因而每个节点都是一个潜在的攻击点,都能被攻击者进行物理和逻辑攻击。另外,传感器通常部署在无人维护的环境当中,这更加方便了攻击者捕获传裤虚瞎感节点。当捕获了传感节点后,攻击者就可以通过编程接口(JTAG接口),修改或获取传感节点中的信息或代码,根据文献[3]分析,攻击者可利用简单的工具(计算机、UISP自由软件)在不到一分钟的时间内就可以把EEPROM、Flash和SRAM中的所有信息传输到计算机中,通过汇编软件,可很方便地把获取的信息转换成汇编文件格式,从而分析出传感节点所存储的程序代码、路由协议及密钥等机密信息,同时还可以修改程序代码,并加载到传感节点中。
很显然,目前通用的传感节点具有很大的安全漏洞,攻击者通过此漏洞,可方便地获取传感节点中的机密信息、修改传感节点中的程序代码,如使得传感节点具有多个身份ID,从而以多个身份在传感器网络中进行通信,另外,攻击还可以通过获取存储在传感节点中的密钥、代码等信息进行,从而伪造或伪装成合法节点加入到传感网络中。一旦控制了传感器网络中的一部分节点后,攻击者就可以发动很多种攻击,如监听传感器网络中传输的信息,向传感器网络中发布假的路由信息或传送假的传感信息、进行拒绝服务攻击等。
对策:由于传感节点容易被物理操纵是传感器网络不可回避的安全问题,必须通过其它的技术方案来提高传感器网络的安全性能。如在通信前进行节点与节点的身份认证;设计新的密钥协商方案,使得即使有一小部分节点被操纵后,攻击者也不能或很难从获取的节点信息推导出其它节点的密钥信息等。另外,还可以通过对传感节点软件的合法性进行认证等措施来提高节点本身的安全性能。
‘捌’ 无线传感器网络故障的诊断技术
无线传感器网络故障的诊断技术
随着社会的发展与不断进步,无线传感器网络得到广泛应用,但是由于无线传感器节点的能量具有制约性,导致无线传感器网络的运用环境比较脆弱,下面我为大家搜索整理了关于无线传感器网络故障的诊断技术,欢迎参考阅读,希望对大家有所帮助!想了解更多相关信息请持续关注我们应届毕业生培训网!
无线传感器网络是由大量传感器节点组成的,因为传感器节点廉价和微型的特点,促使无线传感器网络对节点的利用率非常高,尤其是在无线传感网络的监测区域,在自组织方式的参与下,以互相协作的形式完成无线传感器的监测任务,所以其应用的前景也是非常广阔的,但是传感器节点的工作能力是有限的,难免会发生系统故障。
1 无线传感器网络故障评价指标
无线传感器网络故障诊断的性能评价指标是以无线传感器的网络特点和网络应用为基础制定的,其标准主要体现在诊断精度、特殊环境诊断精度、能效性以及诊断时间四个方面。
诊断精度。无线传感器故障诊断精度是诊断机制对故障最直接的评价方式,特别是在网络安全性较高的环境中,如果不能保障故障诊断的精确度则会导致传感器网络系统出现安全漏洞,同时意味着此故障诊断精度的失效,诊断精度主要是以一次过程为故障诊断的依据,分析被诊断的节点状态与实际节点状态的相符程度,诊断精度中故障误报率和故障识别率为评价故障的两个指标。
特殊环境诊断精度。无线传感器网络在特殊环境中的应用是有特定的诊断精度的,例如自然灾害、人为破坏等特殊环境因素,由于故障的节点在网络中的分布不均匀,可能会出现故障区域节点的过分疏散或者是节点的过分密集等现象,普通的诊断精度是不适应的,所以只能采取特殊环境的诊断精度对故障进行评价。
能效性。受无线传感器网络能量供应方面的影响,能效性成为故障诊断评价机制中需要最先考虑的问题,能效性比较强的故障诊断机制可以促进网络使用寿命的延长,以便保障传感器网络监测、计算方面能量的持续供应,与能效性有直接关系的因素有数据通信、处理和采集三方面。
诊断时间。无线传感器网络投入使用后,如需进行故障诊断需要对传感器中节点与节点之间的关系进行协作性判断,主要是因为节点呈现激活状态的数量比较多,如果节点出现联系性的故障一定会对无线传感器网络造成巨大的能耗压力,所以节点故障诊断的时间不宜过长。
2 无线传感器网络故障诊断分类
无线传感器网络故障主要来源于传感器的节点,主要表现在四个模块上,分别为能量电池供应模块、无线网络通信模块、传感处理模块和传感器模块,基于无线传感器网络的运行和使用,其组成元件、部件会出现各种各样的问题,如干扰通信、线路老化、电能耗损以及接线松动等等,引发无线传感器网络发生故障。
2.1 节点级别的故障
节点级别的故障主要是发生在传感器网络的节点处,大部分故障主要是传感器的节点本身出现了问题,其又可分为节点软故障和节点硬故障,软故障是指节点在不影响无线传感器网络运行的前提下发生故障,只有对数据进行传送和测量时,可瞬间影响通信的故障;硬故障是指对节点本身以及对传感器网络造成的直接损害,例如节点本身损坏、电源布置不合理或电源能量不足都会造成无线传感器网络故障。
2.2 网络级别的故障
网络级别的故障是指无线传感器的节点本身是正常的,但是在节点与节点之间的传输、协作方面上出现制约性问题,导致网络连接异常、通信受阻、信息丢失、IP偏差、非法入侵等等,此故障的出现是直接作用于网络的,其故障的表现极其明显,而且故障出现的速度非常快,影响范围比较广,属于无线网络传感器网络中相对较为敏感的故障。
2.3 功能级别的故障
无线传感器网络功能级别的故障对于整体网络都是存在影响的,如出现功能级别的故障会造成网络中汇集点不能正常接收和收集网络中运行的全部信息,引起功能级别故障的原因主要有传感器节点的重启、死亡和失效,链接线路故障以及路由装置故障等。
2.4 数据级别的故障
数据级别的故障是指传感器节点表现正常,但是传达了错误的数据信息,致使网络形成错误的数据感知,数据级别故障的隐蔽性比较强,只有经过精细的检测才可发现传感器节点传递了错误的感知数据,因为即使节点感知数据传递错误,但是其本身的表现形式是没有任何问题的,因此无形中降低了无限传感器网络的运行性能,而且会错误的引导网络管理员检查维修。
3 无线传感器网络故障诊断技术
无线传感器网络故障诊断主要是针对其投入使用的期间,通过对网络传递的信息进行分析,判断无线传感器网络是否发生故障,根据故障发生的状态检测导致故障发生的基本根源,无线传感器网络故障的诊断是一项复杂而又系统的工程项目,基于其所处的环境以及自身运行的特点决定了故障诊断的难度,为降低诊断的难度,一般情况在进行故障诊断时需要以传感器各个节点日常的测量数据为主,以节点数据传输的附加信息为辅,促进故障诊断的效率。
无线传感器网络故障诊断的指标为传感器高质量的服务和能量的有效保护,而故障诊断策略的衡量指标主要有错误警报率和检测率,其中错误报警率反馈的是无效警报在诊断报告总警报中的占据比例,错误报警率较低即可说明此次诊断结果具有较高的可信度;检测率反馈的是被检测出的故障在网络总故障中占据的比例,与错误报告率相反,检测率越高则说明诊断策略的有效性比较高。目前对无线传感器网络故障诊断技术的`研究主要以传感器的故障、场景类型为中心,对传感器节点的功能、读数故障进行探讨,分析无线传感器网络故障的诊断技术。
3.1 传感器节点读数故障的诊断技术
节点读数故障的诊断技术主要是针对无线传感器网络中错误的测量数据,错误数据产生的情况主要有外界环境干扰导致网络受到安全攻击、节点部件的损坏等等,针对节点读数故障提出以下诊断技术。 (1)WMFDS诊断技术。此技术主要是对传感器节点与节点之间的数据进行空间相关性的测量,越临近的节点其测量结果的相似性越大,所以只能通过正常读数的空间关系,根据此理论提出WMFDS诊断方法,主要是对两节点之间的故障率、分布密度进行分析,判断节点是否出现问题,此方法还可对相邻的节点进行加权处理,但是此方法只可以用于具有空间相关性的节点读数上。
(2)FIND诊断技术。此技术利用无线传感器节点在监控区域具有可持续性监测的特点,感知网络的突然事件,此节点的数据读取可反馈事件发生点到节点相对应的距离,传感器节点的信号强度与距离是呈现相反关系的,即相对距离越大,节点信号强度越弱,节点信号的强弱变化被称为单调变化特性,所以节点的单调特性是反馈节点出现读数故障的判断标准,比如故障节点会表现出与相对距离单调特性相反的现象。
(3)CSN诊断技术。此诊断技术是有一定局限性的,主要是以移动设备为检测对象,利用加速器得出节点的地震运动,故障节点的读数会存在阈值,此阈值与实际历史差距比较大,通过计算机分析节点比例,如出现较高阈值则说明此节点出现了一定的问题。
3.2 传感器节点网络故障的诊断技术
传感器节点网络故障主要表现在链路受环境因素的影响导致网络可靠性降低等现象,针对传感器节点网络故障提出的诊断技术主要有以下三种:
(1)网络软件调试法。在传感器的节点中采取调试代理,利用软件的调试命令,对节点处的网络状态进行分析,收集节点网络数据,确定节点网络故障的来源。
(2)特定模型推断法。特定模型推断法主要包括两种,分布式和集中式的方法。分布式的诊断技术是针对网络中的所有节点,利用从局部到整体的决策方法,分布式诊断技术的代表方法有LD2和TinyD2,最终通过节点网络的整合,得出诊断报告;集中式的诊断技术是在网络节点处植入小型探测器,以便对经过节点的应用数据进行分类、分组,但是探测器对得到信息的分析能力是非常有限的,所以需要感知系统的参与,以此为基础进行节点网络故障的细化诊断。
(3)无声故障诊断技术。此诊断技术在三种技术中是具有一定特殊性的,其可对无经验故障进行有效诊断,例如AD诊断技术,即是比较典型的代表,通过对节点各类型诊断信息之间相关性图表的变化,发现网络中存在的隐藏故障,即无声故障,此技术可提高故障诊断的准确率,同时降低了故障出现的频率。
综上所述,利用无线传感器故障诊断技术诊断无线传感器网络中出现的问题,并对其进行及时有效的处理,一方面可以提高无线传感器网络的运用效率,另一方面提高了无线传感器网络的使用率,所以无线传感器网络的正常运行在一定程度上促进我国经济效益和社会效益的发展和提高。
综上所述,无线传感器网络在世界范围内的关注度是比较高的,其渗透多项科学技术,例如无线通信技术、传感器技术以及信息处理技术等等,无线传感器的研究不论是在经济效益上还是在社会效益上,都是具有极其重要的意义的,无线传感器有效的网络故障诊断技术一方面可以提高无线传感器的利用效率,另一方面对能源节约具有一定的实际价值。
;‘玖’ 无线传感器网络
无线传感器网络(wirelesssensornetwork,WSN)是综合了传感器技术、嵌入式计算机技术、分布式信息处理技术和无线通信技术,能够协作地实时监测、感知和采集网络分布区域内的各种环境或监测对象的信息,并对这些数据进行处理,获得详尽而准确的信息。传送到需要这些信息的用户。它是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成一个多跳的自组织的网络系统。传感器、感知对象和观察者构成了传感器网络的三要素。
无线传感器网络作为当今信息领域新的研究热点,涉及到许多学科交叉的研究领域,要解决的关键技术很多,比如:网络拓扑控制、网络协议、网络安全、时间同步、定位技术、数据融合、数据管理、无线通信技术等方面,同时还要考虑传感器的电源和节能等问题。
所谓部署问题,就是在一定的区域内,通过适当的策略布置传感器节点以满足某种特定的需求。优化节点数目和节点分布形式,高效利用有限的传感器网络资源,最大程度地降低网络能耗,均是节点部署时应注意的问题。
目前的研究主要集中在网络的覆盖问题、连通问题和能耗问题3个方面。
基于节点部署方式的覆盖:1)确定性覆盖2)自组织覆盖
基于网格的覆盖:1)方形网格2)菱形网格
被监测目标状态的覆盖:1)静态目标覆盖2)动态目标覆盖
连通问题可描述为在传感器节点能量有限,感知、通信和计算能力受限的情况下,采用一定的策略(通常设计有效的算法)在目标区域中部署传感器节点,使得网络中的各个活跃节点之间能够通过一跳或多跳方式进行通信。连通问题涉及到节点通信距离和通信范围的概念。连通问题分为两类:纯连通与路由连通。
覆盖中的节能对于覆盖问题,通常采用节点集轮换机制来调度节点的活跃/休眠时间。连通中的节能针对连通问题,也可采用节点集轮换机制与调整节点通信距离的方法。而文献中涉及最多的主要是从节约网络能量和平衡节点剩余能量的角度进行路由协议的研究。
‘拾’ 无线传感器网络信息安全面临的障碍有哪些
物理层所受到的攻击,数据链路层的攻圆雀核击等。基于无线传感器网络的广播性和网络部署区域的开放性等特点,使得无线传感器网络安全问题存在于网络岁念协议的各个层面,如物理层所受到的攻击,通常有信息泄露、拥塞攻击、物理破坏等,物理层所受到的攻击通常有信息泄露、拥塞攻击、物理破坏等橘掘。